【題目】已知橢圓的方程為,是橢圓上的一點,且在第一象限內(nèi),過且斜率等于-1的直線與橢圓交于另一點,點關(guān)于原點的對稱點為.
(1)證明:直線的斜率為定值;
(2)求面積的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.若“,則”的逆命題為真命題
B.命題“,”的否定是“,”
C.若,則“”是“”的必要不充分條件
D.函數(shù)的最小值為2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c.已知a=3,b2+c2=a2bc,2,且∠BAD=90°,則△ABC的面積為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,已知拋物線y2=2px(p>0)及點M(2,0),動直線l過點M交拋物線于A,B兩點,當l垂直于x軸時,AB=4.
(1)求p的值;
(2)若l與x軸不垂直,設(shè)線段AB中點為C,直線l1經(jīng)過點C且垂直于y軸,直線l2經(jīng)過點M且垂直于直線l,記l1,l2相交于點P,求證:點P在定直線上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟的發(fā)展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率的調(diào)整,調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額,依照個人所得稅稅率表,調(diào)整前后的計算方法如下表:
個人所得稅稅率表(調(diào)整前) | 個人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) | 級數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) |
1 | 不超過1500元部分 | 3 | 1 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 2 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 3 | 超過12000元至25000元的部分 | 20 |
… | … | … | … | … | … |
某稅務(wù)部門在某公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入(元) | ||||||
人數(shù) | 30 | 40 | 10 | 8 | 7 | 5 |
(1)若某員工2月的工資、薪金等稅前收入為7500元時,請計算一下調(diào)整后該員工的實際收入比調(diào)整前增加了多少?
(2)現(xiàn)從收入在及的人群中按分層抽樣抽取7人,再從中選4人作為新納稅法知識宣講員,用表示抽到作為宣講員的收入在元的人數(shù),表示抽到作為宣講員的收入在元的人數(shù),設(shè)隨機變量,求的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體的棱長為,動點在線段上,、分別是、的中點,則下列結(jié)論中正確的是______________.
①與所成角為;
②平面;
③存在點,使得平面平面;
④三棱錐的體積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,四棱錐中,菱形所在的平面,是中點,是上的點.
(1)求證:平面平面;
(2)若是的中點,當時,是否存在點,使直線與平面的所成角的正弦值為?若存在,請求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,過點作斜率為的直線交拋物線于兩點.
(1)若,求的面積;
(2)過點分別作拋物線的兩條切線,且直線與直線相交于點,問:點是否在某條定直線上?若在,求該定直線的方程;若不在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com