精英家教網 > 高中數學 > 題目詳情

【題目】已知中,角所對的邊分別為,滿足

1)求的大;

2)如圖,,在直線的右側取點,使得.當角為何值時,四邊形面積最大.

【答案】12

【解析】

1)(法一)根據正弦定理利用“邊化角”的方法將原式化為,利用兩角和的正弦公式進行化簡,結合三角形的性質即可求得的大小;(法二)根據余弦定理利用“角化邊”的方法將原式化為,化簡得出的值,即可得出的大小.

(2)根據題意,設,根據余弦定理表達出,再根據三角形的面積公式,分別表達出,從而得到四邊形面積的函數,利用三角函數的性質即可求出面積的最大值.

1)(法一):在中,由正弦定理得

,故

(法二)在中,由余弦定理得

2)由(1)知,,為等邊三角形,

,則在中,由余弦定理得,

四邊形的面積

時,

所以當時,四邊形的面積取得最大值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為了美化環(huán)境,某公園欲將一塊空地規(guī)劃建成休閑草坪,休閑草坪的形狀為如圖所示的四邊形ABCD.其中AB=3百米,AD=百米,且△BCD是以D為直角頂點的等腰直角三角形.擬修建兩條小路AC,BD(路的寬度忽略不計),設∠BAD=,()

(1)當cos時,求小路AC的長度;

(2)當草坪ABCD的面積最大時,求此時小路BD的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱錐中,底面是邊長為2的正三角形, , .

(1)求證:平面平面

(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐中,分別為棱的中點.已知,.

求證:(1)直線PA平面DEF;

(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中, 是等邊三角形, , .

(1)求證:平面平面;

(2)若直線所成角的大小為60°,求二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓:,直線.

(1)若直線與圓相切,的值;

(2)若直線與圓交于不同的兩點,當∠AOB為銳角時,k的取值范圍;

(3),是直線上的動點,作圓的兩條切線,切點為,探究:直線是否過定點。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校從高一年級期末考試的學生中抽出 6 名學生,其成績(均為整數)的頻率分布直方圖如圖所示.

1)估計這次考試的中位數

2)假設分數在的學生的成績都不相同,且都在分以上,現用簡單隨機抽樣方法,從 個數中任取 個數,求這 個數恰好是兩個學生的成績的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知在長方體ABCD-A1B1C1D1中,AB=2,BC=2,CC1=3,長方體每條棱所在直線與過點C1的平面α所成的角都相等,則直線AC與平面α所成角的余弦值為( 。

A. 1 B. 0 C. 0 D. 1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是一個幾何體的平面展開圖,其中四邊形ABCD為正方形,△PDC, △PBC, △PAB, △PDA為全等的等邊三角形,E、F分別為PA、PD的中點,在此幾何體中,下列結論中錯誤的為 ( )

A. 平面BCD⊥平面PAD B. 直線BE與直線AF是異面直線

C. 直線BE與直線CF共面 D. 面PAD與面PBC的交線與BC平行

查看答案和解析>>

同步練習冊答案