【題目】已知拋物線的焦點(diǎn)為,過點(diǎn)作斜率為的直線交拋物線于兩點(diǎn).
(1)若,求的面積;
(2)過點(diǎn)分別作拋物線的兩條切線,且直線與直線相交于點(diǎn),問:點(diǎn)是否在某條定直線上?若在,求該定直線的方程;若不在,請(qǐng)說明理由.
【答案】(1); (2).
【解析】
(1)若,則直線的方程是.聯(lián)立,求得和焦點(diǎn)到直線的距離是,即可求得答案;
(2)由得,設(shè),,則,
由,,設(shè)直線的方程為,化為,結(jié)合已知,即可求得答案.
(1)若,則直線的方程是.
聯(lián)立消去得,不妨設(shè)點(diǎn)在軸上方,
設(shè)點(diǎn),,則
則.
而焦點(diǎn)到直線的距離是,
的面積為.
(2)由得,
設(shè),,則,
由,,
設(shè)直線的方程為,化為,
聯(lián)立方程消去
得:,
有,
,
則直線的方程為,
同理,直線的方程為,
聯(lián)立方程消去
得:,
有,
點(diǎn)在定直線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,直線與拋物線C相切于點(diǎn)P,過點(diǎn)P作拋物線C的割線PQ,割線PQ與拋物線C的另一交點(diǎn)為Q,A為PQ的中點(diǎn).過A作y軸的垂線與y軸交于點(diǎn)H,與直線l相交于點(diǎn)N,M為線段AN的中點(diǎn).
(1)求拋物線C的方程;
(2)在x軸上是否存在一點(diǎn)T,使得當(dāng)割線PQ變化時(shí),總有為定值?若存在,求出該點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,是橢圓上的一點(diǎn),且在第一象限內(nèi),過且斜率等于-1的直線與橢圓交于另一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為.
(1)證明:直線的斜率為定值;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,,,,,E是AD的中點(diǎn),O是AC與BE的交點(diǎn).將沿BE折起到圖2中的位置,得到四棱錐.
(1)證明:平面;
(2)若平面平面,求平面與平面夾角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,直線與拋物線C相切于點(diǎn)P,過點(diǎn)P作拋物線C的割線PQ,割線PQ與拋物線C的另一交點(diǎn)為Q,A為PQ的中點(diǎn).過A作y軸的垂線與y軸交于點(diǎn)H,與直線l相交于點(diǎn)N,M為線段AN的中點(diǎn).
(1)求拋物線C的方程;
(2)求證:點(diǎn)M在拋物線C上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有若干撲克牌:6張牌面分別是2,3,4,5,6,7的撲克牌各一張,先后從中取出兩張.若每次取后放回,連續(xù)取兩次,點(diǎn)數(shù)之和是偶數(shù)的概率為;若每次取后不放回,連續(xù)取兩次,點(diǎn)數(shù)之和是偶數(shù)的概率為,則( )
A.B.C.D.以上三種情況都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四位生物學(xué)專家在篩選臨床抗病毒藥物,,,時(shí)做出如下預(yù)測(cè):
甲說:和都有效;
乙說:和不可能同時(shí)有效;
丙說:有效;
丁說:和至少有一種有效.
臨床試驗(yàn)后證明,有且只有兩種藥物有效,且有且只有兩位專家的預(yù)測(cè)是正確的,由此可判斷有效的藥物是( )
A.和B.和C.和D.和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于,兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若點(diǎn)的極坐標(biāo)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),設(shè)直線與的交點(diǎn)為,當(dāng)變化時(shí)點(diǎn)的軌跡為曲線.
(1)求出曲線的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,點(diǎn)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com