【題目】如圖,在四棱錐中,底面是邊長為2的正方形,且,若點(diǎn)E,F分別為ABCD的中點(diǎn).

1)求證:平面平面;

2)若二面角的平面角的余弦值為,求與平面所成角的正弦值.

【答案】1)見解析(2

【解析】

1)先由線面垂直的判定定理證得平面,再由面面垂直的判定定理證得平面平面

2)由二面角的定義及題意可知,,建立空間直角坐標(biāo)系,求出平面的法向量,利用即可得解.

1中點(diǎn),

,平面,平面,

平面,

平面ABCD

平面平面.

2,,平面平面

就是二面角的平面角,

所以,

如圖作,垂足為O,

,所以,,則,

如圖,建立空間直角坐標(biāo)系,

,,,

設(shè)平面的法向量為,則

,即

,則

是平面的一個(gè)法向量,,

.

所以與平面所成角的正弦值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量AQI指數(shù)是反映空氣質(zhì)量狀況指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對(duì)應(yīng)關(guān)系如表:

AQI指數(shù)值

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

如圖所示的是某市111日至20AQI指數(shù)變化的折線圖:

下列說法不正確的是(

A.天中空氣質(zhì)量為輕度污染的天數(shù)占

B.天中空氣質(zhì)量為優(yōu)和良的天數(shù)為

C.天中AQI指數(shù)值的中位數(shù)略低于

D.總體來說,該市11月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)ab滿足a2+b2-ab3

1)求a-b的取值范圍;

2)若ab0,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)當(dāng)時(shí),不等式恒成立,求m的取值范圍;

2)求證:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩直線方程,點(diǎn)上運(yùn)動(dòng),點(diǎn)上運(yùn)動(dòng),且線段的長為定值.

(Ⅰ)求線段的中點(diǎn)的軌跡方程;

(Ⅱ)設(shè)直線與點(diǎn)的軌跡相交于兩點(diǎn),為坐標(biāo)原點(diǎn),若,求原點(diǎn)的直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

上一年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩年度未發(fā)生有責(zé)任道路交通事故

下浮

上三年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任不涉及死亡的道路交通事故

上浮10%

上一個(gè)年度發(fā)生有責(zé)任交通死亡事故

上浮30%

某機(jī)構(gòu)為了解某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

1)按照我國《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,,記為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)

2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000:

①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進(jìn)100(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,圓,動(dòng)圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.

1)求的方程;

2)若直線與曲線交于兩點(diǎn),問是否在軸上存在一點(diǎn),使得當(dāng)變動(dòng)時(shí)總有?若存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱柱中,底面為平行四邊形, ,,且在底面上的投影恰為的中點(diǎn).

1)過作與垂直的平面,交棱于點(diǎn),試確定點(diǎn)的位置,并說明理由;

2)若點(diǎn)滿足,試求的值,使二面角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù),.

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)求函數(shù)的極值;

3)若函數(shù)在區(qū)間上有唯一零點(diǎn),試求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案