【題目】已知實(shí)數(shù)a、b滿足a2+b2-ab=3.
(1)求a-b的取值范圍;
(2)若ab>0,求證:.
【答案】(1)﹣2≤a﹣b≤2;(2)證明見(jiàn)解析.
【解析】
(1)由已知得a2+b2=3+ab≥2|ab|.
①當(dāng)ab≥0時(shí),3+ab≥2ab,解得ab≤3,即0≤ab≤3;
②當(dāng)ab<0時(shí),3+ab≥﹣2ab,解得 ab≥﹣1,即﹣1≤ab<0,
得0≤3﹣ab≤4,即0≤(a﹣b)2≤4,即﹣2≤a﹣b≤2;
(2)由(1)知0<ab≤3,可得,
利用配方法即可容易證明.
(1)因?yàn)?/span>a2+b2﹣ab=3,所以a2+b2=3+ab≥2|ab|.
①當(dāng)ab≥0時(shí),3+ab≥2ab,解得ab≤3,即0≤ab≤3;
②當(dāng)ab<0時(shí),3+ab≥﹣2ab,解得 ab≥﹣1,即﹣1≤ab<0,
所以﹣1≤ab≤3,則0≤3﹣ab≤4,
而(a﹣b)2=a2+b2﹣2ab=3+ab﹣2ab=3﹣ab,
所以0≤(a﹣b)2≤4,即﹣2≤a﹣b≤2;
(2)由(1)知0<ab≤3,
因?yàn)?/span>
當(dāng)且僅當(dāng)ab=2時(shí)取等號(hào),
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某商場(chǎng)2018年洗衣機(jī)、電視機(jī)和電冰箱三種電器各季度銷量的百分比堆積圖(例如:第3季度內(nèi),洗衣機(jī)銷量約占,電視機(jī)銷量約占,電冰箱銷量約占).根據(jù)該圖,以下結(jié)論中一定正確的是( )
A. 電視機(jī)銷量最大的是第4季度
B. 電冰箱銷量最小的是第4季度
C. 電視機(jī)的全年銷量最大
D. 電冰箱的全年銷量最大
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近五年來(lái)某草場(chǎng)羊只數(shù)量與草場(chǎng)植被指數(shù)兩變量間的關(guān)系如表所示,繪制相應(yīng)的散點(diǎn)圖,如圖所示:
年份 | 1 | 2 | 3 | 4 | 5 |
羊只數(shù)量(萬(wàn)只) | 1.4 | 0.9 | 0.75 | 0.6 | 0.3 |
草地植被指數(shù) | 1.1 | 4.3 | 15.6 | 31.3 | 49.7 |
根據(jù)表及圖得到以下判斷:①羊只數(shù)量與草場(chǎng)植被指數(shù)成減函數(shù)關(guān)系;②若利用這五組數(shù)據(jù)得到的兩變量間的相關(guān)系數(shù)為,去掉第一年數(shù)據(jù)后得到的相關(guān)系數(shù)為,則;③可以利用回歸直線方程,準(zhǔn)確地得到當(dāng)羊只數(shù)量為2萬(wàn)只時(shí)的草場(chǎng)植被指數(shù);以上判斷中正確的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+acosx.
(1)求函數(shù)f(x)的奇偶性.并證明當(dāng)|a|≤2時(shí)函數(shù)f(x)只有一個(gè)極值點(diǎn);
(2)當(dāng)a=π時(shí),求f(x)的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年春節(jié)期間,新型冠狀病毒(2019﹣nCoV)疫情牽動(dòng)每一個(gè)中國(guó)人的心,危難時(shí)刻全國(guó)人民眾志成城.共克時(shí)艱,為疫區(qū)助力.我國(guó)S省Q市共100家商家及個(gè)人為緩解湖北省抗疫消毒物資壓力,募捐價(jià)值百萬(wàn)的物資對(duì)口輸送湖北省H市.
(1)現(xiàn)對(duì)100家商家抽取5家,其中2家來(lái)自A地,3家來(lái)自B地,從選中的這5家中,選出3家進(jìn)行調(diào)研.求選出3家中1家來(lái)自A地,2家來(lái)自B地的概率.
(2)該市一商家考慮增加先進(jìn)生產(chǎn)技術(shù)投入,該商家欲預(yù)測(cè)先進(jìn)生產(chǎn)技術(shù)投入為49千元的月產(chǎn)增量.現(xiàn)用以往的先進(jìn)技術(shù)投入xi(千元)與月產(chǎn)增量yi(千件)(i=1,2,3,…,8)的數(shù)據(jù)繪制散點(diǎn)圖,由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線的附近,且:,,,,,其中,,,根據(jù)所給的統(tǒng)計(jì)量,求y關(guān)于x回歸方程,并預(yù)測(cè)先進(jìn)生產(chǎn)技術(shù)投入為49千元時(shí)的月產(chǎn)增量.
附:對(duì)于一組數(shù)據(jù)(u1,v1)(u2,v2),其回歸直線v=α+βu的斜率和截距的最小二乘法估計(jì)分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把4個(gè)相同的小球全部放入2個(gè)不同的盒子里,每個(gè)盒子至少放1個(gè)球,不同的放法數(shù)記為;把4個(gè)不同的小球全部放入2個(gè)不同的盒子里,每個(gè)盒子至少放1個(gè)球,不同的放法數(shù)記為.現(xiàn)在從到的所有整數(shù)中(包括和兩個(gè)整數(shù))抽取3個(gè)數(shù),則這3個(gè)數(shù)之和共有( )種結(jié)果.
A.26B.27C.28D.29
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為A,過(guò)的直線與y軸交于點(diǎn)M,滿足(O為坐標(biāo)原點(diǎn)),且直線l與直線之間的距離為.
(1)求橢圓C的方程;
(2)在直線上是否存在點(diǎn)P,滿足?存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】11月,2019全國(guó)美麗鄉(xiāng)村籃球大賽在中國(guó)農(nóng)村改革的發(fā)源地-安徽鳳陽(yáng)舉辦,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設(shè)甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.
(1)經(jīng)過(guò)1輪投球,記甲的得分為,求的分布列;
(2)若經(jīng)過(guò)輪投球,用表示經(jīng)過(guò)第輪投球,累計(jì)得分,甲的得分高于乙的得分的概率.
①求;
②規(guī)定,經(jīng)過(guò)計(jì)算機(jī)計(jì)算可估計(jì)得,請(qǐng)根據(jù)①中的值分別寫(xiě)出a,c關(guān)于b的表達(dá)式,并由此求出數(shù)列的通項(xiàng)公式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com