【題目】(1)若等比數(shù)列的前n項(xiàng)和為,求實(shí)數(shù)a的值;
(2)對(duì)于非常數(shù)數(shù)列有下面的結(jié)論:若數(shù)列為等比數(shù)列,則該數(shù)列的前n項(xiàng)和為(為常數(shù)).寫(xiě)出它的逆命題并判斷真假,請(qǐng)說(shuō)明理由;
【答案】(1)-3;(2)逆命題:數(shù)列是非常數(shù)數(shù)列,若其前n項(xiàng)和(為常數(shù)),則該數(shù)列是等比數(shù)列.是假命題.見(jiàn)解析
【解析】
(1)利用與的關(guān)系得,,當(dāng)時(shí),,然后運(yùn)算求解即可.
(2)先寫(xiě)出逆命題,然后,利用命題的定義使用反證法或推理法進(jìn)行判斷其真假即可.
(1).當(dāng)時(shí),.因?yàn)閿?shù)列為等比數(shù)列,所以滿(mǎn)足的表達(dá)式,即
(2)逆命題:數(shù)列是非常數(shù)數(shù)列,若其前n項(xiàng)和(為常數(shù)),則該數(shù)列是等比數(shù)列.
判斷:是假命題.
理由一:直接舉反例.當(dāng)時(shí),數(shù)列為:B,0,0,0,…,
故其前n項(xiàng)和滿(mǎn)足(為常數(shù)),但不是等比數(shù)列.
理由二:用推理.時(shí),.
時(shí),時(shí),;
時(shí),.
時(shí),與數(shù)列是非常數(shù)數(shù)列矛盾;
時(shí),,當(dāng)且時(shí),數(shù)列是等比數(shù)列,
當(dāng)時(shí),因?yàn)?/span>,所以數(shù)列是首項(xiàng)為非零實(shí)數(shù),第二項(xiàng)起均為零的數(shù)列,不是等比數(shù)列
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)三角形的邊長(zhǎng)與面積都是整數(shù),則稱(chēng)為“海倫三角形”;三邊長(zhǎng)互質(zhì)的海倫三角形,稱(chēng)為“本原海倫三角形”;邊長(zhǎng)都不是3的倍數(shù)的本原海倫三角形,稱(chēng)為“奇異三角形”.
(1)求奇異三角形的最小邊長(zhǎng)的最小值;
(2)求證:等腰的奇異三角形有無(wú)數(shù)個(gè);
(3)問(wèn):非等腰的奇異三角形有多少個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,圓經(jīng)過(guò)橢圓的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn)在橢圓上,且,.
(Ⅰ)求橢圓的方程和點(diǎn)的坐標(biāo);
(Ⅱ)過(guò)點(diǎn)的直線(xiàn)與圓相交于、兩點(diǎn),過(guò)點(diǎn)與垂直的直線(xiàn)與橢圓相交于另一點(diǎn),求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分10分)[選修4-4,極坐標(biāo)與參數(shù)方程選講]
在直角坐標(biāo)系x0y中,曲線(xiàn)C1的參數(shù)方程為(為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為p=4sin9
(1)求曲線(xiàn)C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ)已知曲線(xiàn)C3的極坐標(biāo)方程為=α,(0<α<x,p∈R),點(diǎn)A是曲線(xiàn)C3與C1的交點(diǎn),點(diǎn)B是曲線(xiàn)C3與C2的交點(diǎn),且A,B均異于原點(diǎn)O,且|AB|=4,求實(shí)數(shù)α的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是各項(xiàng)均不為零的等差數(shù)列,且公差,若將此數(shù)列刪去某一項(xiàng)得到的數(shù)列(按原來(lái)的順序)是等比數(shù)列,則的所有可能值是____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】假設(shè)某市2011年新建住房400萬(wàn)m2,其中250萬(wàn)m2是中低價(jià)房,預(yù)計(jì)在今后的若干年內(nèi),該市每年新建住房面積平均比上一年增長(zhǎng)8%.另外,每年新建住房中,中低價(jià)房的面積比上一年增加50萬(wàn)m2,那么到哪一年底,
(1)該市歷年所建中低價(jià)房的累計(jì)面積(以2011年為累計(jì)的第一年)將首次不少于4750萬(wàn)m2?
(2)當(dāng)年建造的中低價(jià)房的面積占該年建造住房面積的比例首次大于85%.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn),這5部專(zhuān)著中有3部產(chǎn)生于漢、魏、晉、南北朝時(shí)期,某中學(xué)擬從這5部專(zhuān)著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專(zhuān)著中至少有一部是漢、魏、晉、南北朝時(shí)期專(zhuān)著的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)的序列,其中.(是線(xiàn)段的中點(diǎn),是線(xiàn)段的中點(diǎn),……,是線(xiàn)段的中點(diǎn),…)
(1)寫(xiě)出與之間的關(guān)系;
(2)設(shè),計(jì)算,由此推測(cè)數(shù)列的通項(xiàng)公式,并且加以證明;
(3)求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com