【題目】【2015高考湖北(理)20】某廠用鮮牛奶在某臺設備上生產(chǎn)兩種奶制品.生產(chǎn)1噸產(chǎn)品需鮮牛奶2噸,使用設備1小時,獲利1000元;生產(chǎn)1噸產(chǎn)品需鮮牛奶1.5噸,使用設備1.5小時,獲利1200元.要求每天產(chǎn)品的產(chǎn)量不超過產(chǎn)品產(chǎn)量的2倍,設備每天生產(chǎn)兩種產(chǎn)品時間之和不超過12小時. 假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個隨機變量,其分布列為

W

12

15

18

P

0.3

0.5

0.2

該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利(單位:元)是一個隨機變量.

)求的分布列和均值;

若每天可獲取的鮮牛奶數(shù)量相互獨立,求3天中至少有1天的最大獲利超過10000元的概率.

【答案】的分布列為:

8160

10200

10800

0.3

0.5

0.2

;()0.973.

【解析】)設每天兩種產(chǎn)品的生產(chǎn)數(shù)量分別為,相應的獲利為,

則有 (1)

目標函數(shù)為

時,(1)表示的平面區(qū)域如圖1,三個頂點分別為

變形為,

時,直線軸上的截距最大,

最大獲利

時,(1)表示的平面區(qū)域如圖2,三個頂點分別為

變形為,

時,直線軸上的截距最大,

最大獲利

時,(1)表示的平面區(qū)域如圖3,

四個頂點分別為.

變形為,

時,直線軸上的截距最大,

最大獲利

故最大獲利的分布列為

8160

10200

10800

0.3

0.5

0.2

因此,

)由()知,一天最大獲利超過10000元的概率,

由二項分布,3天中至少有1天最大獲利超過10000元的概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:

廣告費用x(萬元)

4

2

3

5

銷售額y(萬元)

49

26

39

54

根據(jù)上表可得回歸方程 = x+ 中的 為9.4,據(jù)此模型預報廣告費用為6萬元時銷售額為(
A.63.6萬元
B.67.7萬元
C.65.5萬元
D.72.0萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設點到坐標原點的距離和它到直線的距離之比是一個常數(shù)

(1)求點的軌跡;

(2)若時得到的曲線是,將曲線向左平移一個單位長度后得到曲線,過點的直線與曲線交于不同的兩點,過的直線分別交曲線于點,設, , ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|﹣2≤x<5},B={x|3x﹣5≥x﹣1}.
(1)求A∩B;
(2)若集合C={x|﹣x+m>0},且A∪C=C,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(xt)=xt2+bxt
(1)若b=2,且xt=log2t,t∈[ ,2],求f(xt)的最大值;
(2)當y=f(xt)與y=f(f(xt))有相同的值域時,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=5 + 的定義域為(
A.{x|1<x≤2}
B.{x|1≤x≤2}
C.{x|x≤2且x≠1}
D.{x|x≥0且x≠1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓.

(1)若橢圓的右焦點坐標為,求的值;

(2)由橢圓上不同三點構(gòu)成三角形稱為橢圓的內(nèi)接三角形.若以為直角頂點的橢圓的內(nèi)接等腰直角三角形恰有三個,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)已知橢圓的離心率為,橢圓的短軸端點與雙曲線的焦點重合,過點且不垂直于軸的直線與橢圓相交于兩點.

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中, 為棱上一動點, 為底面上一動點, 的中點,若點都運動時,點構(gòu)成的點集是一個空間幾何體,則這個幾何體是

A. 棱柱 B. 棱臺 C. 棱錐 D. 球的一部分

查看答案和解析>>

同步練習冊答案