精英家教網 > 高中數學 > 題目詳情

【題目】在正方體中, 為棱上一動點, 為底面上一動點, 的中點,若點都運動時,點構成的點集是一個空間幾何體,則這個幾何體是

A. 棱柱 B. 棱臺 C. 棱錐 D. 球的一部分

【答案】A

【解析】由題意知,當P在A′處,Q在AB上運動時,M的軌跡為過AA′的中點,在平面AA′B′B內平行于AB的線段(靠近AA′),當P在A′處,Q在AD上運動時,M的軌跡為過AA′的中點,在平面AA′D′D內平行于AD的線段(靠近AA′),

當Q在B處,P在AA′上運動時,M的軌跡為過AB的中點,在平面AA′B′B內平行于AA′的線段(靠近AB),

當Q在D處,P在AA′上運動時,M的軌跡為過AD的中點,在平面AA′B′B內平行于AA′的線段(靠近AD),

當P在A處,Q在BC上運動時,M的軌跡為過AB的中點,在平面ABCD內平行于AD的線段(靠近AB),

當P在A處,Q在CD上運動時,M的軌跡為過AD的中點,在平面ABCD內平行于AB的線段(靠近AB),

同理得到:P在A′處,Q在BC上運動;P在A′處,Q在CD上運動;P在A′處,Q在C處,P在AA′上運動;

P、Q都在AB,AD,AA′上運動的軌跡.進一步分析其它情形即可得到M的軌跡為棱柱體.

故選:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】【2015高考湖北(理)20】某廠用鮮牛奶在某臺設備上生產兩種奶制品.生產1噸產品需鮮牛奶2噸,使用設備1小時,獲利1000元;生產1噸產品需鮮牛奶1.5噸,使用設備1.5小時,獲利1200元.要求每天產品的產量不超過產品產量的2倍,設備每天生產兩種產品時間之和不超過12小時. 假定每天可獲取的鮮牛奶數量W(單位:噸)是一個隨機變量,其分布列為

W

12

15

18

P

0.3

0.5

0.2

該廠每天根據獲取的鮮牛奶數量安排生產,使其獲利最大,因此每天的最大獲利(單位:元)是一個隨機變量.

)求的分布列和均值;

若每天可獲取的鮮牛奶數量相互獨立,求3天中至少有1天的最大獲利超過10000元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列各組函數中,表示同一函數的是( )
A.
與g(x)=x﹣1
B.f(x)=2|x|與
C.

D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,正方形與直角梯形所在平面互相垂直, ,

(I)求證: 平面

(II)求證: 平面

(III)求四面體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】等腰直角三角形ABC的直角頂點A在x軸的正半軸上,B在y軸的正半軸上,C在第一象限,設∠BAO=θ(O為坐標原點),AB=AC=2,當OC的長取得最大值時,tanθ的值為(
A.
B.﹣1+
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】國Ⅳ標準規(guī)定:輕型汽車的屢氧化物排放量不得超過80mg/km.根據這個標準,檢測單位從某出租車公司運營的A、B兩種型號的出租車中分別抽取5輛,對其氮氧化物的排放量進行檢測,檢測結果記錄如表(單位:mg/km)

A

85

80

85

60

90

B

70

x

95

y

75

由于表格被污損,數據x,y看不清,統(tǒng)計員只記得A、B兩種出租車的氮氧化物排放量的平均值相等,方差也相等.
(1)求表格中x與y的值;
(2)從被檢測的5輛B種型號的出租車中任取2輛,記“氮氧化物排放量超過80mg/km”的車輛數為X,求X=1時的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= sin2x+2cos2x+m(0≤x≤ ).
(1)若函數f(x)的最大值為6,求常數m的值;
(2)若函數f(x)有兩個零點x1和x2 , 求m的取值范圍,并求x1和x2的值;
(3)在(1)的條件下,若g(x)=(t﹣1)f(x)﹣ (t≥2),討論函數g(x)的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校從高一年級學生中隨機抽取部分學生,將他們的模塊測試成績分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計,得到如圖所示的頻率分布直方圖.已知高一年級共有學生600名,據此估計,該模塊測試成績不少于60分的學生人數為(

A.588
B.480
C.450
D.120

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 ,左焦點是.

(1)若左焦點與橢圓的短軸的兩個端點是正三角形的三個頂點,點在橢圓上.求橢圓的方程;

(2)過原點且斜率為的直線與(1)中的橢圓交于不同的兩點,設,求四邊形的面積取得最大值時直線的方程;

(3)過左焦點的直線交橢圓兩點,直線交直線于點,其中是常數,設, ,計算的值(用的代數式表示).

查看答案和解析>>

同步練習冊答案