【題目】已知函數(shù)f(xt)=xt2+bxt
(1)若b=2,且xt=log2t,t∈[ ,2],求f(xt)的最大值;
(2)當y=f(xt)與y=f(f(xt))有相同的值域時,求b的取值范圍.

【答案】
(1)解:函數(shù) .b=2,且xt=log2t,

∴xt∈[﹣1,1],

,對稱軸為xt=﹣1,

可得xt∈[﹣1,1]的最大值為f(1)=3


(2)解: ,xt∈R

時, ,∴y=f(xt)的值域為 ,

令u=f(xt),則

函數(shù)y=f(f(xt))即為:y=u2+bu,

若y=f(xt)與y=f(f(xt))有相同的值域,則等價于它們有相同的最小值

即滿足:

所以:b∈(﹣∞,0]∪[2,+∞)


【解析】(1)利用已知條件,化簡f(xt)的表達式,利用二次函數(shù)的最值求解最大值;(2)求出y=f(xt)與y=f(f(xt))的最小值,利用值域相同,列出不等式即可求b的取值范圍.
【考點精析】本題主要考查了函數(shù)的值域和二次函數(shù)的性質的相關知識點,需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質是相同的;當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調區(qū)間;

(Ⅱ)當時, 求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖已知橢圓C: +y2=1,以橢圓的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0).設圓T與橢圓C交于點M與點N.
(1)求 的最小值;
(2)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:丨OR丨丨OS丨為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a0,a1.設命題p:函數(shù)yloga(x1)(0,+)內(nèi)單調遞減;命題q:曲線yx2(2a3)x1x軸交于不同的兩點.若pq為真,pq為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】寫出由下列各組命題構成的“pq”“pq”以及“非p”形式的命題,并判斷它們的真假:

(1)p3是素數(shù),q3是偶數(shù);

(2)px=-2是方程x2x20的解,qx1是方程x2x20的解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2015高考湖北(理)20】某廠用鮮牛奶在某臺設備上生產(chǎn)兩種奶制品.生產(chǎn)1噸產(chǎn)品需鮮牛奶2噸,使用設備1小時,獲利1000元;生產(chǎn)1噸產(chǎn)品需鮮牛奶1.5噸,使用設備1.5小時,獲利1200元.要求每天產(chǎn)品的產(chǎn)量不超過產(chǎn)品產(chǎn)量的2倍,設備每天生產(chǎn)兩種產(chǎn)品時間之和不超過12小時. 假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個隨機變量,其分布列為

W

12

15

18

P

0.3

0.5

0.2

該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利(單位:元)是一個隨機變量.

)求的分布列和均值;

若每天可獲取的鮮牛奶數(shù)量相互獨立,求3天中至少有1天的最大獲利超過10000元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax+ 的圖象經(jīng)過點A(1,1),B(2,﹣1).
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調性并用定義證明;
(3)求f(x)在區(qū)間[ ,1]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,拋物線 與橢圓 在第一象限的交點為, 為坐標原點, 為橢圓的右頂點, 的面積為.

求拋物線的方程;

點作直線、 兩點,射線、分別交、兩點,記的面積分別為,問是否存在直線,使得?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等腰直角三角形ABC的直角頂點A在x軸的正半軸上,B在y軸的正半軸上,C在第一象限,設∠BAO=θ(O為坐標原點),AB=AC=2,當OC的長取得最大值時,tanθ的值為(
A.
B.﹣1+
C.
D.

查看答案和解析>>

同步練習冊答案