若偶函數(shù)f(x)滿足f(x+1)=f(x-1),且x∈[0,1]時,f(x)=
x
,則f(
7
2
)=
 
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)f(x)滿足f(x+1)=f(x-1),可得函數(shù)f(x)是以2為周期的周期函數(shù),進而結(jié)合函數(shù)的奇偶性及x∈[0,1]時,f(x)的解析式,可得答案.
解答: 解:∵函數(shù)f(x)滿足f(x+1)=f(x-1),
∴f(x+2)=f(x),
即函數(shù)f(x)是以2為周期的周期函數(shù),
∴f(
7
2
)=f(
7
2
-4)=f(-
1
2
),
又∵函數(shù)f(x)為偶函數(shù),
故f(-
1
2
)=f(
1
2
),
∵x∈[0,1]時,f(x)=
x
,
∴f(
1
2
)=
2
2
,
故答案為:
2
2
點評:本題考查的知識點是函數(shù)奇偶性,函數(shù)的周期性,函數(shù)求值,是函數(shù)圖象和性質(zhì)的簡單綜合應用,難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a>b>0,求證:ea+e-a>eb+e-b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直角梯形PBCD,A是PD邊上的中點(如圖甲),∠D=∠C=
π
2
,BC=CD=2,PD=4,將△PAB沿AB折到△SAB的位置,使SB⊥BC,點E在SD上,且
SE
=
1
3
SD
,(如圖乙)
(1)求證:SA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等腰直角三角形ABC中,CA=CB=3,平面內(nèi)一點M滿足
BM
AM
(λ≥2,λ∈R),則
CM
CA
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若一個圓錐的側(cè)面展開圖是面積為2π的半圓面,則該圓錐的表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知空間直角坐標系中,O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),則四面體O-ABC的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方形ABCD的邊長為1,P,Q分別為邊AB,DA上的點,且CP=CQ,若△CPQ的面積為
1
3
,則∠BCP的大小為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E的方程為
x2
a2
+
y2
b2
=1
(a>b>0),AB是它的一條傾斜角為135°的弦,且M(2,1)是弦AB的中點,則橢圓E的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)是定義在R上的偶函數(shù),對于任意的實數(shù)x,都有f(x)•f(x+1)=1,則f(
7
2
)=
 

查看答案和解析>>

同步練習冊答案