【題目】下列命題:
①已知a,b,m都是正數,并且a<b,則 > ;
②在△ABC中,角A,B,C的對邊分別為a,b,c,若∠A=60°,a=7,b=8,則三角形有一解;
③若函數f(x)= ,則f( )+f( )+f( )+…+f( )=5;
④在等比數列{an}中,a1+a2+…+an= (其中n∈N* , q為公比);
⑤如圖,在正方體ABCD﹣A1B1C1D1中,點M,N分別是CD,CC1的中點,則異面直線A1M與DN所成角的大小是90°.
其中真命題有(寫出所有真命題的序號).
【答案】①③⑤
【解析】解:①∵a,b,m都是正數,并且a<b,∴ = >0,∴ > ,即①為真命題;②bsin60°=8× =4 ,∵0<bsin60°<7,∴三角形有2解;故②錯誤③若函數f(x)= ,則f(x)+f(1﹣x)= + = + = + = =1,則f( )+f( )+f( )+…+f( )=5;成立,故③正確,④在等比數列{an}中,當q≠1時,a1+a2+…+an= (其中n∈N* , q為公比);當q=1時,a1+a2+…+an=na1 , 故④錯誤,⑤以D為坐標原點,建立如圖所示的空間直角坐標系.設棱長為2,
則D(0,0,0),N(0,2,1),M(0,1,0),A1(2,0,2), =(0,2,1), =(﹣2,1,﹣2)
=0,所以 ⊥ ,即A1M⊥DN,異面直線A1M與DN所成的角的大小是0°,故⑤正確,
所以答案是:①③⑤
【考點精析】利用命題的真假判斷與應用對題目進行判斷即可得到答案,需要熟知兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.
科目:高中數學 來源: 題型:
【題目】已知D是以點A(4,1),B(﹣1,﹣6),C(﹣2,3)為頂點的三角形區(qū)域(包括邊界及內部).
(1)寫出表示區(qū)域D的不等式組;
(2)設點B(﹣1,﹣6)、C(﹣2,3)在直線4x﹣3y﹣a=0的異側,求a的取值范圍;
(3)若目標函數z=kx+y(k<0)的最小值為﹣k﹣6,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用一個平面去截正方體,對于截面的邊界,有以下圖形:①鈍角三角形;②直角梯形;③菱形;④正五邊形;⑤正六邊形.則不可能的圖形的選項為( )
A.③④⑤
B.①②⑤
C.①②④
D.②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓過點, , 分別為橢圓的右、下頂點,且.
(1)求橢圓的方程;
(2)設點在橢圓內,滿足直線, 的斜率乘積為,且直線, 分別交橢圓于點, .
(i) 若, 關于軸對稱,求直線的斜率;
(ii) 求證: 的面積與的面積相等.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在y=2x2上有一點P,它到A(1,3)的距離與它到焦點的距離之和最小,則點P的坐標是( )
A.(﹣2,1)
B.(1,2)
C.(2,1)
D.(﹣1,2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在梯形中, , , ,四邊形為矩形,平面平面, .
(Ⅰ)求證: 平面;
(Ⅱ)點在線段上運動,設平面與平面所成銳二面角為,試求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是梯形,AD∥BC,側面ABB1A1為菱形,∠DAB=∠DAA1 .
(Ⅰ)求證:A1B⊥BC;
(Ⅱ)若AD=AB=3BC,∠A1AB=60°,點D在平面ABB1A1上的射影恰為線段A1B的中點,求平面DCC1D1與平面ABB1A1所成銳二面角的大。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com