【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓過點(diǎn), , 分別為橢圓的右、下頂點(diǎn),且.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)在橢圓內(nèi),滿足直線, 的斜率乘積為,且直線, 分別交橢圓于點(diǎn), .
(i) 若, 關(guān)于軸對稱,求直線的斜率;
(ii) 求證: 的面積與的面積相等.
【答案】(1). (2)(i) ;(ii) 見解析.
【解析】試題分析:
(1)由題意求得,橢圓的方程為.
(2)(i)設(shè)出點(diǎn)的坐標(biāo)和直線方程,聯(lián)立直線與橢圓的方程,得到關(guān)于實(shí)數(shù)k的方程,解方程可得;
(ii)利用題意證得,則的面積與的面積相等.
試題解析:
(1)由知, ,
又橢圓過點(diǎn),所以,
解得 所以橢圓的方程為.
(2)設(shè)直線的斜率為,則直線的方程為.
聯(lián)立 消去并整理得, ,
解得, ,所以.
因?yàn)橹本, 的斜率乘積為,所以直線的方程.
聯(lián)立 消去并整理得, ,
解得, ,所以.
(i) 因?yàn)?/span>, 關(guān)于軸對稱,所以,
即,解得.
當(dāng)時,點(diǎn)在橢圓外,不滿足題意.
所以直線的斜率為.
(ii) 聯(lián)立 解得.
所以
.
故的面積與的面積相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐ABC﹣A1B1C1中,底面ABC是邊長為2的正三角形,側(cè)棱AA1⊥底面ABC,AA1= ,P、Q分別是AB、AC上的點(diǎn),且PQ∥BC.
(1)若平面A1PQ與平面A1B1C1相交于直線l,求證:l∥B1C1;
(2)當(dāng)平面A1PQ⊥平面PQC1B1時,確定點(diǎn)P的位置并說明理由.S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =( , ), =(2,cos2x﹣sin2x).
(1)試判斷 與 能否平行?請說明理由.
(2)若x∈(0, ],求函數(shù)f(x)= 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,, 分別為的中點(diǎn),點(diǎn)在線段上.
(Ⅰ)求證:平面;
(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn為數(shù)列{an}的前n項(xiàng)和,且an>0,an2+an=2Sn .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn= ,記Tn=b12b32…b2n﹣12 , 求證:Tn≥ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
①已知a,b,m都是正數(shù),并且a<b,則 > ;
②在△ABC中,角A,B,C的對邊分別為a,b,c,若∠A=60°,a=7,b=8,則三角形有一解;
③若函數(shù)f(x)= ,則f( )+f( )+f( )+…+f( )=5;
④在等比數(shù)列{an}中,a1+a2+…+an= (其中n∈N* , q為公比);
⑤如圖,在正方體ABCD﹣A1B1C1D1中,點(diǎn)M,N分別是CD,CC1的中點(diǎn),則異面直線A1M與DN所成角的大小是90°.
其中真命題有(寫出所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 中,過橢圓 右焦點(diǎn)的直線交于兩點(diǎn) , 為的中點(diǎn),且 的斜率為 .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過點(diǎn)的直線(不與坐標(biāo)軸垂直)與橢圓交于 兩點(diǎn),若在線段上存在點(diǎn),
使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本市某玩具生產(chǎn)公司根據(jù)市場調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準(zhǔn)備每天生產(chǎn), , 三種玩具共100個,且種玩具至少生產(chǎn)20個,每天生產(chǎn)時間不超過10小時,已知生產(chǎn)這些玩具每個所需工時(分鐘)和所獲利潤如表:
玩具名稱 | |||
工時(分鐘) | 5 | 7 | 4 |
利潤(元) | 5 | 6 | 3 |
(Ⅰ)用每天生產(chǎn)種玩具個數(shù)與種玩具表示每天的利潤(元);
(Ⅱ)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com