【題目】已知函數(shù),其中.
(1)討論的單調(diào)性;
(2)當時,證明:;
(3)試比較與 ,并證明你的結(jié)論。
【答案】(1)見解析;(2)見解析;(3)見解析
【解析】
(1)求得,對的范圍分類討論即可求得的單調(diào)性。
(2)將轉(zhuǎn)化成,證明恒成立,利用導數(shù)求得,問題得證。
(3)由(2)可得:,整理得:,所以,整理得:
利用即可得:,問題得解。
(1)函數(shù)的定義域為:,
①當時,,所以在上單調(diào)遞增
②當時,令,解得 .
當時,,所以, 所以在上單調(diào)遞減;
當時,,所以,所以在上單調(diào)遞增.
綜上,當時,函數(shù)在上單調(diào)遞增;
當時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
(2)當 時,,要證明,
即證,即證:.
設(shè),則 ,令得,.
當時,,當時,.
所以為極大值點,且在處取得最大值。
所以,即。故.
(3)證明:(當且僅當時等號成立),即,
則有+
,
故:+
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,平面平面,四邊形是邊長為4的正方形,,,分別是,的中點.
(1)求證:平面;
(2)若直線與平面所成角等于,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
當時,求函數(shù)的單調(diào)增區(qū)間;
若函數(shù)在上是增函數(shù),求實數(shù)a的取值范圍;
若,且對任意,,,都有,求實數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會影響生二孩的意愿,現(xiàn)隨機抽取某地200戶家庭進行調(diào)查統(tǒng)計.這200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數(shù)為60.
(1)完成下列列聯(lián)表:
生二孩 | 不生二孩 | 合計 | |
頭胎為女孩 | 60 | ||
頭胎為男孩 | |||
合計 | 200 |
(2)判斷能否有的把握認為是否生二孩與頭胎的男女情況有關(guān);附:
0,15 | 0.05 | 0.01 | 0.0012.0 | |
k | 2.072 | 3.841 | 6.635 | 10.828 |
(其中).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體中,點在線段上運動,則下列判斷中正確的是( )
①平面平面;
②平面;
③異面直線與所成角的取值范圍是;
④三棱錐的體積不變.
A. ①② B. ①②④ C. ③④ D. ①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)以往的經(jīng)驗,某工程施工期間的降水量(單位:)對工期的影響如下表:
降水量 | ||||
工期延誤天數(shù) |
歷年氣象資料表明,該工程施工期間降水量小于、、的概率分別為、、,求:
(1)在降水量至少是的條件下,工期延誤不超過天的概率;
(2)工期延誤天數(shù)的均值與方差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有下列命題中錯誤的是( )
A.是函數(shù)的極值點;
B.若,則;
C.函數(shù)的最小值為2;
D.函數(shù)的定義域為[1,2],則函數(shù)的定義域為[2,4].
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體ABCD-ABCD中,平面垂直于對角線AC,且平面截得正方體的六個表面得到截面六邊形,記此截面六邊形的面積為S,周長為l,則( )
A. S為定值,l不為定值 B. S不為定值,l為定值
C. S與l均為定值 D. S與l均不為定值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com