【題目】我們知道: ,已知數(shù)列, , 則數(shù)列的通項公式__________

【答案】

【解析】可得,所以數(shù)列{為以為公比,以為首項的等比數(shù)列,所以, 故答案為

【方法點晴】本題主要考查等比數(shù)列的定義以及已知數(shù)列的遞推公式求通項,屬于中檔題.由數(shù)列的遞推公式求通項常用的方法有:(1等差數(shù)列、等比數(shù)列(先根據(jù)條件判定出數(shù)列是等差、等比數(shù)數(shù)列);(2)累加法,相鄰兩項的差成等求和的數(shù)列可利用累加求通項公式;(3)累乘法,相鄰兩項的商是能求出積的特殊數(shù)列時用累乘法求通項;(4)構造法,形如的遞推數(shù)列求通項往往用構造法,即將利用待定系數(shù)法構造成的形式,再根據(jù)等比數(shù)例求出的通項,進而得出的通項公式本題中,利用方法4通過構造數(shù)列{為等比數(shù)列求解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】從某學校的名男生中隨機抽取名測量身高,被測學生身高全部介于之間,將測量結果按如下方式分成八組:第一組,第二組,第八組,下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為人。

)求第七組的頻率;

)估計該校的名男生的身高的中位數(shù)以及身高在以上(含)的人數(shù);

)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為,事件,事件,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩個不相等的非零向量 , ,兩組向量 均由2個 和3個 排列而成,記S= ,Smin表示S所有可能取值中的最小值,則下列命題中
1)S有5個不同的值;(2)若 則Smin與| |無關;(3)若 則Smin與| |無關;(4)若| |>4| |,則Smin>0;(5)若| |=2| |,Smin=8| |2 , 則 的夾角為 .正確的是(
A.(1)(2)
B.(2)(4)
C.(3)(5)
D.(1)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求的單調區(qū)間;

(2)對任意的, ,恒有,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△A1B1C1的三內角余弦值分別等于△A2B2C2三內角的正弦值,那么兩個三角形六個內角中的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax-1(a>0且a≠1).

(1)若函數(shù)y=f(x)的圖象經過點P(3,4),求a的值;

(2)當a變化時,比較f(lg)與f(-2.1)的大小,并寫出比較過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線:y=k (x+2)與圓O:相交于A、B兩點,O是坐標原點,ABO的面積為S.

(1)試將S表示成的函數(shù)S(k),并求出它的定義域;

2)求S的最大值,并求取得最大值時k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設p:A={x|2x2﹣3ax+a2<0},q:B={x|x2+3x﹣10≤0}.
(1)求A;
(2)當a<0時,若¬p是¬q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某幾何體的三視圖都是直角三角形,則該幾何體的體積等于__________

【答案】10

【解析】幾何體為三棱錐,(高為4,底面為直角三角形),體積為

點睛:空間幾何體體積問題的常見類型及解題策略

(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺體,則可直接利用公式進行求解.

(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉換法、分割法、補形法等方法進行求解.

(3)若以三視圖的形式給出幾何體,則應先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解.

型】填空
束】
15

【題目】如圖:在三棱錐中,已知底面是以為斜邊的等腰直角三角形,且側棱長,則三棱錐的外接球的表面積等于__________

查看答案和解析>>

同步練習冊答案