【題目】如圖所示,某幾何體的三視圖都是直角三角形,則該幾何體的體積等于__________.
【答案】10
【解析】幾何體為三棱錐,(高為4,底面為直角三角形),體積為
點睛:空間幾何體體積問題的常見類型及解題策略
(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺體,則可直接利用公式進行求解.
(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉(zhuǎn)換法、分割法、補形法等方法進行求解.
(3)若以三視圖的形式給出幾何體,則應先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解.
【題型】填空題
【結束】
15
【題目】如圖:在三棱錐中,已知底面是以為斜邊的等腰直角三角形,且側(cè)棱長,則三棱錐的外接球的表面積等于__________.
科目:高中數(shù)學 來源: 題型:
【題目】已知動點到定點的距離和它到直線的距離的比值為常數(shù),記動點的軌跡為曲線.
(1)求曲線的方程;
(2)若直線與曲線相交于不同的兩點, ,直線與曲線相交于不同的兩點 ,且,求以, , , 為頂點的凸四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E、F分別是AB、PB的中點
(1)求證:EF⊥CD;
(2)在平面PAD內(nèi)求一點G,使GF⊥平面PCB,并證明你的結論;
(3)求DB與平面DEF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)= sin2x﹣cos2x﹣ ,(x∈R).
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)設△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且c= ,f(C)=0,若 =(1,sinA)與 =(2,sinB)共線,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.
(I)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;
(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com