在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且a<b<c,
3
a=2bsinA.則角B的大小為
 
考點(diǎn):正弦定理
專題:計(jì)算題,解三角形
分析:
3
a=2bsinA,利用正弦定理得
3
sinA=2sinBsinA,從而可得sinB=
3
2
,結(jié)合0<B<π,且a<b<c,可求B.
解答: 解:由
3
a=2bsinA,得
3
sinA=2sinBsinA,
因?yàn)?<A<π,所以sinA≠0,
所以sinB=
3
2
,
因?yàn)?<B<π,且a<b<c,所以B=60°.
故答案為:60°.
點(diǎn)評(píng):本題考查正弦定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(2-a)(x-1)-2lnx,g(x)=xe1-x(a∈R,e為自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(0,
1
2
)
上無(wú)零點(diǎn),求a最小值;
(3)若對(duì)任意給定的x0∈(0,e],關(guān)于x的方程f(x)=g(x0)在x∈(0,e]恒有兩個(gè)不同的實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面給出某村委調(diào)查本村各戶收入情況作出的抽樣,閱讀并回答問(wèn)題:
本村人口:1200人,戶數(shù)300,每戶平均人口數(shù)4人,應(yīng)抽戶數(shù):30戶,抽樣間隔:
1200
30
=40;
確定隨機(jī)數(shù)字:取一張人民幣,編碼的后兩位數(shù)為02;
確定第一樣本戶:編碼的后兩位數(shù)為02的戶為第一樣本戶;
確定第二樣本戶:02+40=42,42號(hào)為第二樣本戶;

(1)該村委采用了何種抽樣方法?
(2)抽樣過(guò)程中存在哪些問(wèn)題,并修改.
(3)何處是用簡(jiǎn)單隨機(jī)抽樣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(x1,x12)、B(x2,x22)是函數(shù)y=x2的圖象上任意不同兩點(diǎn),依據(jù)圖象可知,線段AB總是位于A、B兩點(diǎn)之間函數(shù)圖象的上方,因此有結(jié)論
x12+x22
2
>(
x1+x2
2
2成立.運(yùn)用類比思想方法可知,若點(diǎn)A(x1,sinx1)、B(x2,sinx2)是函數(shù)y=sinx(x∈(0,π))的圖象上的不同兩點(diǎn),則類似地有結(jié)論
 
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖展示了一個(gè)由區(qū)間(0,1)到實(shí)數(shù)集R的映射過(guò)程:區(qū)間(0,1)中的實(shí)數(shù)m對(duì)應(yīng)數(shù)軸上的點(diǎn)M(點(diǎn)A對(duì)應(yīng)實(shí)數(shù)0,點(diǎn)B對(duì)應(yīng)實(shí)數(shù)1),如圖①;將線段AB圍成一個(gè)圓,使兩端點(diǎn)A、B恰好重合,如圖②;再將這個(gè)圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點(diǎn)A的坐標(biāo)為(0,1),在圖形變化過(guò)程中,圖①中線段AM的長(zhǎng)度對(duì)應(yīng)于圖③中的弧ADM的長(zhǎng)度,如圖③,圖③中直線AM與x軸交于點(diǎn)N(n,0),則m的象就是n,記作f(m)=n.

給出下列命題:①f(
1
4
)=1;②f(
1
2
)=0;③f(x)是奇函數(shù);④f(x)在定義域上單調(diào)遞增,則所有真命題的序號(hào)是
 
.(填出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心為(2,1)且被直線4x-3y=0截得的弦長(zhǎng)為2
3
,則圓C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1為正整數(shù),an+1=
an
2
,an為偶數(shù)
3an+1,an為奇數(shù)
,如果a1=5,則a1+a2+a3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x、y滿足約束條件
x≥0
y≥0
x+y≥2
,則z=x+2y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,n是不同直線,α是平面,m?α,則“n∥m”是“n∥α”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案