【題目】已知為拋物線上一個(gè)動(dòng)點(diǎn), 為圓上一個(gè)動(dòng)點(diǎn),那么點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線的準(zhǔn)線距離之和的最小值是

A. B. C. D.

【答案】A

【解析】

由已知得,設(shè)圓心為,因?yàn)閳A, 拋物線上一動(dòng)點(diǎn), 為拋物線的焦點(diǎn)的最短距離為 ,則當(dāng)的直線經(jīng)過點(diǎn)時(shí), 最小,則故選A.
【方法點(diǎn)晴】本題主要考查拋物線的標(biāo)準(zhǔn)方程和拋物線的簡單性質(zhì)及利用拋物線的定義求最值,屬于難題.與拋物線的定義有關(guān)的最值問題常常實(shí)現(xiàn)由點(diǎn)到點(diǎn)的距離與點(diǎn)到直線的距離的轉(zhuǎn)化:(1)將拋物線上的點(diǎn)到準(zhǔn)線的距化為該點(diǎn)到焦點(diǎn)的距離,構(gòu)造出“兩點(diǎn)之間線段最短”,使問題得解;(2)將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,利用“點(diǎn)與直線上所有點(diǎn)的連線中垂線段最短”原理解決.本題是將到準(zhǔn)線的距離轉(zhuǎn)化為到焦點(diǎn)的距離,再根據(jù)幾何意義解題的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年1月1日,作為貴陽市打造“千園之城”27個(gè)示范性公園之一的泉湖公園正式開園.元旦期間,為了活躍氣氛,主辦方設(shè)置了水上挑戰(zhàn)項(xiàng)目向全體市民開放.現(xiàn)從到公園游覽的市民中隨機(jī)抽取了60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計(jì)出100名市民中愿意接受挑戰(zhàn)和不愿意接受挑戰(zhàn)的男女生比例情況,具體數(shù)據(jù)如圖表:

(1)根據(jù)條件完成下列列聯(lián)表,并判斷是否在犯錯(cuò)誤的概率不超過1%的情況下愿意接受挑戰(zhàn)與性別有關(guān)?

愿意

不愿意

總計(jì)

男生

女生

總計(jì)

(2)現(xiàn)用分層抽樣的方法從愿意接受挑戰(zhàn)的市民中選取7名挑戰(zhàn)者,再從中抽取2人參加挑戰(zhàn),求抽取的2人中至少有一名男生的概率.

參考數(shù)據(jù)及公式:

0.1

0.05

0.025

0.01

2.706

3.841

5.024

6.635

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4;坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)中,曲線

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程.

(Ⅱ)求曲線上的點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求不等式的解集;

2)若,且,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩袋中各裝有大小相同的小球9個(gè),其中甲袋中紅色、黑色、白色小球的個(gè)數(shù)分別為2,3,4,乙袋中紅色、黑色、白色小球的個(gè)數(shù)均為3,某人用左右手分別從甲、乙兩袋中取球.

1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;

2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球(左右手依次各取兩球?yàn)閮纱稳∏颍┑某晒θ》ù螖?shù)為隨機(jī)變量X,求X的分布列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=2sin(x-)-,現(xiàn)將f(x)的圖象向左平移個(gè)單位長度,再向上平移個(gè)單位長度,得到函數(shù)g(x)的圖象.

(1)求f()+g()的值;

(2)若a,b,c分別是△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a+c=4,且當(dāng)x=B時(shí),g(x)取得最大值,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)?/span>(2,2),函數(shù)g(x)f(x1)f(32x)

(1)求函數(shù)g(x)的定義域;

(2)f(x)是奇函數(shù)且在定義域上單調(diào)遞減,求不等式g(x)0的解集

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是半圓的直徑,是將半圓圓周四等分的三個(gè)分點(diǎn)

(1)從這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),求這3個(gè)點(diǎn)組成直角三角形的概率;

(2)在半圓內(nèi)任取一點(diǎn),求的面積大于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的左焦點(diǎn)F為圓的圓心,且橢圓C上的點(diǎn)到點(diǎn)F的距離最小值為。

I)求橢圓C的方程;

II)已知經(jīng)過點(diǎn)F的動(dòng)直線與橢圓C交于不同的兩點(diǎn)A、B,點(diǎn)M坐標(biāo)為),證明: 為定值。

查看答案和解析>>

同步練習(xí)冊(cè)答案