【題目】某桶裝水經(jīng)營(yíng)部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價(jià)為5元,銷售單價(jià)與日均銷售量的關(guān)系如圖所示.
銷售單價(jià)/元 | … | 6 | 6.5 | 7 | 7.5 | 8 | 8.5 | … |
日均銷售量/桶 | … | 480 | 460 | 440 | 420 | 400 | 380 | … |
請(qǐng)根據(jù)以上數(shù)據(jù)作出分析,這個(gè)經(jīng)營(yíng)部怎樣定價(jià)才能獲得最大利潤(rùn)?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得、阿基米德被稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,他對(duì)圓錐曲線有深刻而系統(tǒng)的研究,主要研究成果集中在他的代表作《圓錐曲線》一書(shū),阿波羅尼斯圓是他的研究成果之一,指的是:已知?jiǎng)狱c(diǎn)M與兩定點(diǎn)A、B的距離之比為λ(λ>0,λ≠1),那么點(diǎn)M的軌跡就是阿波羅尼斯圓.下面,我們來(lái)研究與此相關(guān)的一個(gè)問(wèn)題.已知圓:x2+y2=1和點(diǎn) ,點(diǎn)B(1,1),M為圓O上動(dòng)點(diǎn),則2|MA|+|MB|的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線 的離心率為e,經(jīng)過(guò)第一、三象限的漸近線的斜率為k,且e≥ k.
(1)求m的取值范圍;
(2)設(shè)條件p:e≥ k;條件q:m2﹣(2a+2)m+a(a+2)≤0.若p是q的必要不充分條件,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,三棱柱A1B1C1﹣ABC的側(cè)棱AA1⊥底面ABC,AB⊥AC,AB=AA1 , D是棱CC1的中點(diǎn).
(Ⅰ)證明:平面AB1C⊥平面A1BD;
(Ⅱ)在棱A1B1上是否存在一點(diǎn)E,使C1E∥平面A1BD?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, , , , 且, 分別為的中點(diǎn).
(1)求證: 平面;
(2)求證: 平面;
(3)若二面角的大小為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正四棱錐中, 是正方形, 是正方形的中心, 底面, 是的中點(diǎn).
(I)證明: 平面;
(II)證明:平面平面;
(III)已知: ,求點(diǎn)到面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解1000名高一新生的身體生長(zhǎng)狀況,用系統(tǒng)抽樣法(按等距的規(guī)則)抽取40名同學(xué)進(jìn)行檢查,將學(xué)生從1~1000進(jìn)行編號(hào),現(xiàn)已知第18組抽取的號(hào)碼為443,則第一組用簡(jiǎn)單隨機(jī)抽樣抽取的號(hào)碼為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中, 平面, , 在線段上, , .
(1)求證: ;
(2)試探究:在上是否存在點(diǎn),滿足平面,若存在,請(qǐng)指出點(diǎn)的位置,并給出證明;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1為矩形,AB=2,AA1=2 ,D是AA1的中點(diǎn),BD與AB1交于點(diǎn)O,且CO⊥平面ABB1A1 .
(1)證明:CD⊥AB1;
(2)若OC=OA,求直線CD與平面ABC所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com