【題目】已知雙曲線 的離心率為e,經(jīng)過第一、三象限的漸近線的斜率為k,且e≥ k.
(1)求m的取值范圍;
(2)設(shè)條件p:e≥ k;條件q:m2﹣(2a+2)m+a(a+2)≤0.若p是q的必要不充分條件,求a的取值范圍.

【答案】
(1)解:由已知得: , ,

,∴ ,解得m≤3,

∵m>0,∴0<m≤3,即m的取值范圍(0,3]


(2)解:∵m2﹣(2a+2)m+a(a+2)≤0,∴(m﹣a)(m﹣a﹣2)≤0,即a≤m≤a+2,

∵p是q的必要不充分條件,∴

解得0<a≤1,即a的取值范圍為(0,1]


【解析】(1)先結(jié)合雙曲線的方程表示出其離心率與漸近線的斜率,再根據(jù)題中離心率與漸近線斜率的特征列出不等式,即可求得m的取值范圍;(2)先求得條件p,q成立時(shí)m的取值范圍,再結(jié)合“p是q的必要不充分條件”求得a的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;

2)當(dāng)時(shí),

若對于任意,恒有,求的取值范圍;

,求函數(shù)在區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn)的橢圓,右焦點(diǎn)(1,0),且過
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求斜率為2的一組平行弦的中點(diǎn)軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)判斷函數(shù)的奇偶性并證明;

(2)當(dāng)時(shí),求函數(shù)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB的兩個(gè)端點(diǎn)AB分別在x軸和y軸上滑動(dòng),且∣AB∣=2

(1)求線段AB的中點(diǎn)P的軌跡C的方程;

(2)求過點(diǎn)M(1,2)且和軌跡C相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,設(shè)其中表示中的較小者.

(1)在坐標(biāo)系中畫出函數(shù)的圖像;

(2)設(shè)函數(shù)的最大值為,試判斷與1的大小關(guān)系,并說明理由.

(參考數(shù)據(jù): , ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】名學(xué)生分成兩組參加城市綠化活動(dòng),其中組布置盆盆景, 組種植棵樹苗.根據(jù)歷年統(tǒng)計(jì),每名學(xué)生每小時(shí)能夠布置盆盆景或者種植棵樹苗.設(shè)布置盆景的學(xué)生有人,布置完盆景所需要的時(shí)間為,其余學(xué)生種植樹苗所需要的時(shí)間為(單位:小時(shí),可不為整數(shù)).

⑴寫出、的解析式;

⑵比較的大小,并寫出這名學(xué)生完成總?cè)蝿?wù)的時(shí)間的解析式;

⑶應(yīng)怎樣分配學(xué)生,才能使得完成總?cè)蝿?wù)的時(shí)間最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某桶裝水經(jīng)營部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價(jià)為5元,銷售單價(jià)與日均銷售量的關(guān)系如圖所示.

銷售單價(jià)/元

6

6.5

7

7.5

8

8.5

日均銷售量/桶

480

460

440

420

400

380

請根據(jù)以上數(shù)據(jù)作出分析,這個(gè)經(jīng)營部怎樣定價(jià)才能獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={1,3,5,7},B={x|(2x﹣1)(x﹣5)>0},則A∩(RB)( )
A.{1,3}
B.{1,3,5}
C.{3,5}
D.{3,5,7}

查看答案和解析>>

同步練習(xí)冊答案