【題目】設(shè)集合A={x|4x﹣1|<9,x∈R},B={x| ≥0,x∈R},則(RA)∩B=( )
A.(﹣∞,﹣3)∪[ ,+∞)
B.(﹣3,﹣2]∪[0, )??
C.(﹣∞,﹣3]∪[ ,+∞)
D.(﹣3,﹣2]
【答案】A
【解析】解:集合A={x|4x﹣1|<9,x∈R}={x|﹣9<4x﹣1<9,x∈R}
={x|﹣2<x< ,x∈R},
B={x| ≥0,x∈R}
={x|x<﹣3或x≥0,x∈R},
∴RA={x|x≤﹣2或x≥ ,x∈R},
∴(RA)∩B={x|x<﹣3或x≥ ,x∈R}
=(﹣∞,﹣3)∪[ ,+∞).
故選:A.
【考點(diǎn)精析】掌握交、并、補(bǔ)集的混合運(yùn)算是解答本題的根本,需要知道求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)點(diǎn), 和直線(xiàn)相切.
(1)求圓的方程;
(2)若直線(xiàn)經(jīng)過(guò)點(diǎn),并且被圓截得的弦長(zhǎng)為2,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若函數(shù)的定義域?yàn)?/span>,且存在非零常數(shù),對(duì)任意 , 恒成立,則稱(chēng)為線(xiàn)周期函數(shù), 為的線(xiàn)周期.
(1)下列函數(shù)①,②,③(其中表示不超過(guò)x的最大整數(shù)),是線(xiàn)周期函數(shù)的是 (直接填寫(xiě)序號(hào));
(2)若為線(xiàn)周期函數(shù),其線(xiàn)周期為,求證: 為周期函數(shù);
(3)若為線(xiàn)周期函數(shù),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的圓心在直線(xiàn)3x+y﹣1=0上,且圓C在x軸、y軸上截得的弦長(zhǎng)AB和MN分別為 和 .
(1)求圓C的方程;
(2)若圓心C位于第四象限,點(diǎn)P(x,y)是圓C內(nèi)一動(dòng)點(diǎn),且x,y滿(mǎn)足 ,求 的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x﹣t)|x|(t∈R).
(1)當(dāng)t=2時(shí),求函數(shù)f(x)的單調(diào)性;
(2)試討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若t∈(0,2),對(duì)于x∈[﹣1,2],不等式f(x)>x+a都成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,角A、B、C的對(duì)邊分別為a、b、c,已知a=2,A=45°,若三角形有兩解,則邊b的取值范圍是( )
A.b>2
B.b<2
C.2<b<2
D.2<b<2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2 sin( ωx)cos( ωx)+2cos2( ωx)(ω>0),且函數(shù)f(x)的最小正周期為π.
(1)求ω的值;
(2)求f(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com