【題目】已知圓經過點, 和直線相切.
(1)求圓的方程;
(2)若直線經過點,并且被圓截得的弦長為2,求直線的方程.
【答案】(1)(x-1)2+(y+2)2=2;(2)x=2或3x-4y-6=0.
【解析】試題分析:(1)先求線段AB的垂直平分線方程為,設圓心的坐標為C(a,-a-1),由圓心到點的距離和到切線的距離相等求解即可;
(2)由題知圓心C到直線l的距離,進而討論直線斜率存在不存在兩種情況求解即可.
試題解析:
(1)由題知,線段AB的中點M(1,-2), ,
線段AB的垂直平分線方程為,即,
設圓心的坐標為C(a,-a-1),
則,
化簡,得a2-2a+1=0,解得a=1.∴C(1,-2),
半徑r=|AC|==.
∴圓C的方程為(x-1)2+(y+2)2=2.
(解二:可設原方程用待定系數法求解)
(2)由題知圓心C到直線l的距離,
①當直線l的斜率不存在時,直線l的方程為x=2,此時直線l被圓C截得的弦長為2,
滿足條件.
②當直線l的斜率存在時,設直線l的方程為,由題意得,
解得k=,
∴直線l的方程為y=(x-2).
綜上所述,直線l的方程為x=2或3x-4y-6=0.
科目:高中數學 來源: 題型:
【題目】設集合M={x|x<2},集合N={x|0<x<1},則下列關系中正確的是( )
A.M∪N=R
B.M∪RN=R
C.N∪RM=R
D.M∩N=M
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的對稱中心為坐標原點O,焦點在x軸上,左右焦點分別為F,F,左右頂點分別為A,B,且|F1F2|=4,|AB|=4
(1)求橢圓的方程;
(2)過F1的直線l與橢圓C相交于M,N兩點,若△MF2N的面積為 ,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設各項均為正數的數列{an}的前n項和為Sn , 且滿足an2﹣2Sn=2﹣an(n∈N*).
(1)求數列{an}的通項公式;
(2)設bn= ,求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中點,那么( ﹣ ) =;若E是AB的中點,P是△ABC(包括邊界)內任一點.則 的取值范圍是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于數列,設表示數列前項, , , 中的最大項.數列滿足: .
()若,求的前項和.
()設數列為等差數列,證明: 或者(為常數),, , , .
()設數列為等差數列,公差為,且.
記,
求證:數列是等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合A={x|4x﹣1|<9,x∈R},B={x| ≥0,x∈R},則(RA)∩B=( )
A.(﹣∞,﹣3)∪[ ,+∞)
B.(﹣3,﹣2]∪[0, )??
C.(﹣∞,﹣3]∪[ ,+∞)
D.(﹣3,﹣2]
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com