【題目】函數(shù)f(x)= + 的值域為

【答案】[ ]
【解析】解:函數(shù)f(x)= + ,其函數(shù)的定義域為{x|0≤x≤2}.那么:f′(x)=﹣
令f′(x)=0,解得:x= ,
∴當x∈(0, )時,f′(x)>0,f(x)是單調(diào)增函數(shù).
當x∈( ,2)時,f′(x)<0,f(x)是單調(diào)減函數(shù).
∴當x= 時,f(x)取得極大值,即最大值為
當x=0時,f(x)=2,當x=2時,f(x)=
所以得函數(shù)f(x)的值域為[ , ].
所以答案是:[ , ].
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的值域的相關(guān)知識可以得到問題的答案,需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中點,那么( =;若E是AB的中點,P是△ABC(包括邊界)內(nèi)任一點.則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設Sn是數(shù)列{an}的前n項和,且a1=﹣1, =Sn , 求數(shù)列{an}的前n項和Sn= , 通項公式an=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}的前n項和為S,a2+a6=20,S5=40.
(1)求{an}的通項公式;
(2)設等比數(shù)列{bn}滿足b2=a3 , b3=a7.若b6=ak , 求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={x|4x﹣1|<9,x∈R},B={x| ≥0,x∈R},則(RA)∩B=(
A.(﹣∞,﹣3)∪[ ,+∞)
B.(﹣3,﹣2]∪[0, )??
C.(﹣∞,﹣3]∪[ ,+∞)
D.(﹣3,﹣2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的各項均為正數(shù),滿足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
(1)求證: ;
(2)若{an}是等比數(shù)列,求數(shù)列{an}的通項公式;
(3)設數(shù)列{an}的前n項和為Sn , 求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形是正方形, , 都是等邊三角形, 、、分別是線段、、的中點,分別以、、為折痕將四個等邊三角形折起,使得、、四點重合于一點,得到一個四棱錐.對于下面四個結(jié)論:

為異面直線; 直線與直線所成的角為

平面; 平面平面

其中正確結(jié)論的個數(shù)有(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;

II)解關(guān)于x的不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是公差不為零的等差數(shù)列,滿足數(shù)列的通項公式為

1)求數(shù)列的通項公式;

2將數(shù)列,中的公共項按從小到大的順序構(gòu)成數(shù)列請直接寫出數(shù)列的通項公式;

3,是否存在正整數(shù) ,使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由

查看答案和解析>>

同步練習冊答案