【題目】設A是單位圓O和x軸正半軸的交點,P,Q是圓O上兩點,O為坐標原點,∠AOP= ,∠AOQ=α,α∈[0, ].
(1)若Q( , ),求cos(α﹣ )的值;
(2)設函數(shù)f(α)=sinα( ),求f(α)的值域.

【答案】
(1)解:由已知得cosα= ,sinα=

∴cos( )= + × =


(2)解: =( , ), =(cosα,sinα),

= cosα+ sinα,

∴f(α)= sinαcosα+ sin2α= sin2α﹣ cos2α+ = sin(2α﹣ )+

∵α∈[0, ],∴2α﹣ ∈[﹣ , ],

∴當2α﹣ =﹣ 時,f(α)取得最小值 + =0,

當2α﹣ = 時,f(α)取得最大值 =

∴f(α)的值域是[0, ]


【解析】(1)利用差角的余弦公式計算;(2)利用三角恒等變換化簡f(α),再利用α的范圍和正弦函數(shù)的性質求出f(α)的最值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCDA1B1C1D1中,下列說法正確的是____ (填序號).

(1)直線AC1在平面CC1B1B內(nèi).

(2)設正方形ABCDA1B1C1D1的中心分別為O、O1,則平面AA1C1C與平面BB1D1D的交線為OO1.

(3)由A、C1B1確定的平面是ADC1B1.

(4)由A、C1、B1確定的平面與由A、C1D確定的平面是同一個平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=log2x+ax+b(a>0),若存在實數(shù)b,使得對任意的x∈[t,t+2](t>0)都有|f(x)|≤1+a,則t的最小值是(
A.2
B.1
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l:mx﹣y﹣m+2=0與圓C:x2+y2+4x﹣4=0交于A,B兩點,若△ABC為直角三角形,則m=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設F為雙曲線 =1(a>b>0)的右焦點,過點F的直線分別交兩條漸近線于A,B兩點,OA⊥AB,若2|AB|=|OA|+|OB|,則該雙曲線的離心率為(
A.
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)為二次函數(shù),且f(x-1)+f(x)=2x2+4.

(1)求f(x)的解析式;

(2)當x∈[t,t+2],t∈R時,求函數(shù)f(x)的最小值(用t表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設某設備的使用年限x(年)和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

試求:(1yx之間的回歸方程;

2)當使用年限為10年時,估計維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校組織的一次籃球定點投籃訓練中,規(guī)定每人最多投3次,在A處每投進一球得3分,在B處每投進一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投第三次,某同學在A處的命中率為0.25,在B處的命中率為0.8,該同學選擇先在A處投一球,以后都在B處投,用X表示該同學投籃訓練結束后所得的總分.
(1)求該同學投籃3次的概率;
(2)求隨機變量X的數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校某研究性學習小組在對學生上課注意力集中情況的調查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)y與聽課時間x(單位:分鐘)之間的關系滿足如圖所示的圖象,當x∈(0,12]時,圖象是二次函數(shù)圖象的一部分,其中頂點A(10,80),過點B(12,78);當x∈[12,40]時,圖象是線段BC,其中C(40,50).根據(jù)專家研究,當注意力指數(shù)大于62時,學習效果最佳.

(1)試求y=f(x)的函數(shù)關系式;

(2)教師在什么時段內(nèi)安排內(nèi)核心內(nèi)容,能使得學生學習效果最佳?請說明理由.

查看答案和解析>>

同步練習冊答案