已知i為虛數(shù)單位,則|
1+i
i
|=
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用虛數(shù)單位i的冪運(yùn)算性質(zhì),化復(fù)數(shù) 
1+i
i
為代數(shù)形式,再利用復(fù)數(shù)的模的定義求出它的模.
解答: 解:∵復(fù)數(shù)
1+i
i
=
(1+i)i
i•i
=1-i,
∴|
1+i
i
|=|1-i|=
1+(-1)2
=
2

故答案為:
2
點(diǎn)評(píng):本題考查兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運(yùn)算性質(zhì),復(fù)數(shù)的模的定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn,公比為q,若
q(S6-S3)
S9-S6
=
1
4
,且10是a2,a4的等差中項(xiàng).
(1)求{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足bn=
n
an
,記數(shù)列{bn}的前n項(xiàng)和為T(mén)n,若對(duì)于任意的n∈N*,恒有T2n>(-1)n-1t-
2n
4n
,試求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

|1-x|+|x-5|≤4解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱錐P-ABC的三條側(cè)棱兩兩互相垂直,則該正三棱錐的內(nèi)切球與外接球的半徑之比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=e 
|x|
x2+1
(x∈R)有下列命題:
①函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱,
②在區(qū)間(0,+∞)上,函數(shù)y=f(x)是減函數(shù),
③函數(shù)f(x)的最小值是e 
1
2
,
④在區(qū)間(-∞,-1)上,函數(shù)f(x)是增函數(shù),
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
b
>0”是“
a
,
b
夾角為銳角”的
 
條件.(選填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式
x+6
4-x
<1的解集是為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面有4個(gè)命題:
①當(dāng)x>0時(shí),2x+
1
2x
的最小值為2;
②若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程為y=
3
x,且其一個(gè)焦點(diǎn)與拋物線y2=8x的焦點(diǎn)重合,則雙曲線的離心率為2;
③將函數(shù)y=cos2x的圖象向右平移
π
6
個(gè)單位,可得到函數(shù)y=sin(2x-
π
6
)的圖象;
④在Rt△ABC中,AC⊥BC,AC=a,BC=b,則△ABC的外接圓半徑r=
a2+b2
2
;類(lèi)比到空間,若三棱錐S-ABC的三條側(cè)棱SA、SB、SC兩兩互相垂直,且長(zhǎng)度分別為a、b、c,則三棱錐S-ABC的外接球的半徑R=
a2+b2+c2
2

其中錯(cuò)誤命題的序號(hào)為
 
 (把你認(rèn)為錯(cuò)誤命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(ωx+φ)(ω>0,|φ|<
π
2
向左平移
π
3
后得到如圖所示的函數(shù)圖象,則φ=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案