【題目】如圖,棱長(zhǎng)為1的正方體中,是線(xiàn)段上的動(dòng)點(diǎn),則下列結(jié)論正確的是( ).

①異面直線(xiàn)所成的角為

③三棱錐的體積為定值

的最小值為2

A.①②③B.①②④C.③④D.②③④

【答案】A

【解析】

①根據(jù)異面直線(xiàn)所成的角的定義即可判斷;

②由線(xiàn)面垂直的性質(zhì)即可判斷;

③先求得M到平面DCC1D1的距離再利用錐體體積公式求解;

④將問(wèn)題轉(zhuǎn)化為平面圖形中線(xiàn)段AD1的長(zhǎng)度,利用余弦定理解三角形解得即可判斷.

①∵BC,

異面直線(xiàn)所成的角即為BC所成的角,

可得夾角為,故正確;

連接,

平面A1BCD1

平面A1BCD1,

,

正確;

∥平面DCC1D1,

∴線(xiàn)段A1B上的點(diǎn)M到平面DCC1D1的距離都為1,

DCC1的面積為定值,

因此三棱錐MDCC1的體積為定值,

正確;

④將面AA1B與面A1BCD1沿A1B展成平面圖形,線(xiàn)段AD1即為AP+PD1的最小值,

D1A1A,D1A1A=135°,

利用余弦定理解三角形得

故④不正確.

因此只有①②③正確.

故選:A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=|2x-1|+|x+m|

l)當(dāng)m=l時(shí),解不等式fx)≥3;

2)證明:對(duì)任意xR,2fx)≥|m+1|-|m|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線(xiàn)的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為

Ⅰ)求曲線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;

Ⅱ)設(shè)為曲線(xiàn)上的動(dòng)點(diǎn),求點(diǎn)上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左右焦點(diǎn)分別為,,橢圓右頂點(diǎn)為,點(diǎn)在圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)點(diǎn)在橢圓上,且位于第四象限,點(diǎn)在圓上,且位于第一象限,已知,求直線(xiàn)的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐中,平面

,。分別為線(xiàn)段上的點(diǎn),且。

(1)證明:平面;

(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng),證明;

2)如果函數(shù)有兩個(gè)極值點(diǎn)),且恒成立,求實(shí)數(shù)k的取值范圍.

3)當(dāng)時(shí),求函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若直線(xiàn)與橢圓交于兩點(diǎn),直線(xiàn)分別與軸交于點(diǎn),在軸上,是否存在點(diǎn),使得無(wú)論非零實(shí)數(shù)怎樣變化,總有為直角?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科站技術(shù)員為了解某品種樹(shù)苗的生長(zhǎng)情況,在該批樹(shù)苗中隨機(jī)抽取一個(gè)容量為的樣本,測(cè)量樹(shù)苗高度(單位:).經(jīng)統(tǒng)計(jì),高度均在區(qū)間內(nèi),將其按,,,,,分成組,制成如圖所示的頻率分布直方圖,其中高度不低于的樹(shù)苗為優(yōu)質(zhì)樹(shù)苗.

(1)求頻率分布直方圖中的值;

(2)已知所抽取的這棵樹(shù)苗來(lái)自于甲、乙兩個(gè)地區(qū),部分?jǐn)?shù)據(jù)如下列聯(lián)表所示,將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為優(yōu)質(zhì)樹(shù)苗與地區(qū)有關(guān)?

甲地區(qū)

乙地區(qū)

優(yōu)質(zhì)樹(shù)苗

非優(yōu)質(zhì)樹(shù)苗

合計(jì)

附:

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案