【題目】已知函數(shù)f(x)=|2x-1|+|x+m|.
(l)當(dāng)m=l時(shí),解不等式f(x)≥3;
(2)證明:對(duì)任意x∈R,2f(x)≥|m+1|-|m|.
【答案】(1){x|x≤-1或x≥1};(2)見解析
【解析】
(1)根據(jù)絕對(duì)值定義將不等式化為三個(gè)不等式組,分別求解,最后求并集,(2)根據(jù)絕對(duì)值三角不等式放縮論證.
(1)當(dāng)m=1時(shí),f(x)=|2x-1|+|x+1|,
①當(dāng)x≤-1時(shí),f(x)=-3x≥3,解得x≤-1,
②當(dāng)-1<x<時(shí),f(x)=-x+2≥3,解得x≤-1,與-1<x<矛盾,舍去,
③當(dāng)x≥時(shí),f(x)=3x≥3,解得x≥1,
綜上,不等式f(x)<3的解集為{x|x≤-1或x≥1};
(2)2f(x)=|4x-2|+|2x+2m|=|2x-1|+|2x-1|+|2x+2m|≥|2x-1|+|2x+2m|≥|2x+2m-2x+1|
=|2m+1|=|(m+1)+m|≥|m+1|-|m|,
∴對(duì)任意x∈R,2f(x)≥|m+1|-|m|.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率,短軸的一個(gè)端點(diǎn)到焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2),是橢圓上的兩點(diǎn),線段的中點(diǎn)在直線上,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓,過(guò)動(dòng)點(diǎn)M(0,m)的直線交x軸于點(diǎn)N,交橢圓C于A,P(其中P在第一象限,N在橢圓內(nèi)),且M是線段PN的中點(diǎn),點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為Q,延長(zhǎng)QM交C于點(diǎn)B,記直線PM,QM的斜率分別為k1,k2.
(1)當(dāng)時(shí),求k2的值;
(2)當(dāng)時(shí),求直線AB斜率的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C所對(duì)邊分別為a、b、c,且2acosC=2b-c.
(1)求角A的大;
(2)若AB=3,AC邊上的中線SD的長(zhǎng)為,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)有兩個(gè)不同的極值點(diǎn)x1,x2,且x1<x2.
(1)求實(shí)數(shù)a的取值范圍;
(2)求證:x1x2<a2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,、是離心率為的橢圓:的左、右焦點(diǎn),過(guò)作軸的垂線交橢圓所得弦長(zhǎng)為,設(shè)、是橢圓上的兩個(gè)動(dòng)點(diǎn),線段的中垂線與橢圓交于、兩點(diǎn),線段的中點(diǎn)的橫坐標(biāo)為1.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3,平面PAC垂直圓O所在平面,直線PC與圓O所在平面所成角為60°,PA⊥PC.
(1)證明:AP⊥平面PBC
(2)求二面角P—AB一C的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)表示不大于實(shí)數(shù)的最大整數(shù),函數(shù),若關(guān)于的方程有且只有5個(gè)解,則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的左、右頂點(diǎn)為,,上、下頂點(diǎn)為,,記四邊形的內(nèi)切圓為.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)已知圓的一條不與坐標(biāo)軸平行的切線交橢圓于P,M兩點(diǎn).
(i)求證:;
(ii)試探究是否為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com