數(shù)列滿足:,(≥3),記
(≥3).
(1)求證數(shù)列為等差數(shù)列,并求通項(xiàng)公式;
(2)設(shè),數(shù)列{}的前n項(xiàng)和為,求證:<<.
(1) (2)詳見解析.
解析試題分析:(1)本題實(shí)質(zhì)由和項(xiàng)求通項(xiàng):
當(dāng)n≥3時(shí),因①, 故②,
②-①,得 bn-1-bn-2===1,為常數(shù),所以,數(shù)列{bn}為等差數(shù)列因 b1==4,故 (2)本題證明實(shí)質(zhì)是求和,而求和關(guān)鍵在于對(duì)開方:因 ,
故 .
所以 ,即 n<Sn
又<,于是. 于是
解 (1)方法一 當(dāng)n≥3時(shí),因①,
故② 2分
②-①,得 bn-1-bn-2===1,為常數(shù),所以,數(shù)列{bn}為等差數(shù)列 5分
因 b1==4,故 8分
方法二 當(dāng)n≥3時(shí),a1a2an="1+an+1," a1a2anan+1="1+an+2," 將上兩式相除并變形,得 ------2分 于是,當(dāng)n∈N*時(shí),
. 5分
又a4=a1a2a3-1=7,故bn=n+3(n∈N*).
所以數(shù)列{bn}為等差數(shù)列,且bn=n+3 8分
(2) 因 , 10分
故 . 12分
所以 ,
即 n<Sn 。 14分
又<,于是. 于是.---16分
考點(diǎn):等差數(shù)列定義,裂項(xiàng)求和
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為等差數(shù)列,且,.
(1)求的通項(xiàng)公式;(2)若等比數(shù)列滿足,,求的前n項(xiàng)和公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}是一個(gè)公差為的等差數(shù)列,已知它的前10項(xiàng)和為,且a1,a2,a4 成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分16分)
設(shè)數(shù)列的前項(xiàng)和為.若對(duì)任意的正整數(shù),總存在正整數(shù),使得,則稱是“數(shù)列”.
(1)若數(shù)列的前項(xiàng)和為,證明:是“數(shù)列”.
(2)設(shè)是等差數(shù)列,其首項(xiàng),公差,若是“數(shù)列”,求的值;
(3)證明:對(duì)任意的等差數(shù)列,總存在兩個(gè)“數(shù)列” 和,使得成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列滿足
(1)證明:數(shù)列是等差數(shù)列;
(2)設(shè),求數(shù)列的前項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分18分)本題共3個(gè)小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知數(shù)列滿足.
若,求的取值范圍;
若是公比為等比數(shù)列,,求的取值范圍;
若成等差數(shù)列,且,求正整數(shù)的最大值,以及取最大值時(shí)相應(yīng)數(shù)列的公差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(diǎn)(,an+1)( n ∈N*)在函數(shù)y=x2+1的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列 滿足b1=1,,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com