在中,角的對邊分別為,且成等差數列
(1)若,求的面積
(2)若成等比數列,試判斷的形狀
(1)(2)等邊三角形.
解析試題分析:(1)根據A、B、C成等差數列,結合A+B+C=π算出B=,再由正弦定理得:.根據b>c得C為銳角,得到C=,從而A=π-B-C=,△ABC是直角三角形,由此不難求出它的面積.
(2)根據正弦定理,結合題意得b2=ac,根據B=,利用余弦定理,得b2=a2+c2-ac,從而得到a2+c2-ac=ac,整理得得(a-c)2=0,由此即可得到△ABC為等邊三角形.
試題解析:∵A、B、C成等差數列,可得2B=A+C.
∴結合A+B+C=π,可得B=.
(1)∵,
∴由正弦定理得,
∵b>c,可得B>C,∴C為銳角,得C=,從而A=π-B-C=.
因此,△ABC的面積為S=bc=××2=.
(2)∵sinA、sinB、sinC成等比數列,即sin2B=sinAsinC.
∴由正弦定理,得b2=ac
又∵根據余弦定理,得b2=a2+c2-2accosB=a2+c2-ac,
∴a2+c2-ac=ac,整理得(a-c)2=0,可得a=c
∵B=,∴A=C=,可得△ABC為等邊三角形.
考點:三角形內角和定理;利用正、余弦定理;三角形的形狀判斷,等差等比數列的性質.
科目:高中數學 來源: 題型:解答題
已知公差不為0的等差數列滿足,,,成等比數列.
(1)求數列的通項公式;(2)數列滿足,求數列的前項和;(Ⅲ)設,若數列是單調遞減數列,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知實數,且按某種順序排列成等差數列.
(1)求實數的值;
(2)若等差數列的首項和公差都為,等比數列的首項和公比都為,數列和的前項和分別為,且,求滿足條件的自然數的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
打一口深20米的井,打到第一米深處時需要40分鐘,從第一米深處打到第二米深處需要50分鐘,以后每深一米都要比前一米多10分鐘,則打到最后一米深處要用 小時,打完這口井總共用 小時.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com