【題目】已知,.
若,解不等式;
若不等式對一切實數(shù)x恒成立,求實數(shù)a的取值范圍;
若,解不等式.
【答案】(1)解集為,或;(2)a的范圍為;(3)見解析.
【解析】
分析: (1)當(dāng)a=1,不等式即(x+2)(x﹣1)≥0,解此一元二次不等式求得它的解集;(2)由題意可得(a+2)x2+4x+a﹣1>0恒成立,當(dāng)a=﹣2 時,顯然不滿足條件,故有 ,由此求得a的范圍;(3)若a<0,不等式為 ax2+x﹣a﹣1>0,即再根據(jù)1和﹣的大小關(guān)系,求得此不等式的解集.
詳解:
當(dāng),不等式即,即,解得,或,
故不等式的解集為,或.
由題意可得恒成立,
當(dāng)時,顯然不滿足條件,.
解得,故a的范圍為.
若,不等式為,即.
,
當(dāng)時,,不等式的解集為;
當(dāng)時,,不等式即,它的解集為;
當(dāng)時,,不等式的解集為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線和的焦點分別為, 交于O,A兩點(O為坐標(biāo)原點),且
(Ⅰ)求拋物線的方程;
(Ⅱ)過點O的直線交的下半部分于點M,交的左半部分于點N,點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)P是圓上的動點,點D是P在x軸上的投影,M為線段PD上一點,且,
(1)當(dāng)P在圓上運動時,求點M的軌跡C的方程;
(2)求過點(3,0)且斜率為的直線被軌跡C所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極點為直角坐標(biāo)系的原點,極軸為x軸正半軸且單位長度相同的極坐標(biāo)系中曲線C1:ρ=1, (t為參數(shù)).
(Ⅰ)求曲線C1上的點到曲線C2距離的最小值;
(Ⅱ)若把C1上各點的橫坐標(biāo)都擴大為原來的2倍,縱坐標(biāo)擴大為原來的 倍,得到曲線 .設(shè)P(﹣1,1),曲線C2與 交于A,B兩點,求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,平面ABC,,,E是BC的中點.
求證:;
求異面直線AE與所成的角的大小;
若G為中點,求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,且,設(shè)函數(shù)在上單調(diào)遞減, 函數(shù)在上為增函數(shù), 為假, 為真,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三條直線l1:2x-y+a=0(a>0),直線l2:4x-2y-1=0和直線l3:x+y-1=0,且l1和l2的距離是.
(1)求a的值.
(2)能否找到一點P,使得P點同時滿足下列三個條件:①P是第一象限的點;②P點到l1的距離是P點到l2的距離的;③P點到l1的距離與P點到l3的距離之比是?若能,求出P點坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點的橢圓的長軸的一個端點是拋物線的焦點,且橢圓的離心率是.
(1)求橢圓的方程;
(2)過點的動直線與橢圓相交于兩點.若線段的中點的橫坐標(biāo)是,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com