【題目】下列判斷錯(cuò)誤的是( )
A.若隨機(jī)變量 服從正態(tài)分布
,則
;
B.若 組數(shù)據(jù)
的散點(diǎn)都在
上,則相關(guān)系數(shù)
;
C.若隨機(jī)變量 服從二項(xiàng)分布:
, 則
;
D. 是
的充分不必要條件;
【答案】D
【解析】對(duì)于A.若隨機(jī)變量 服從正態(tài)分布
,則
,
由 得
.
,A不符合題意;
對(duì)于B.若 組數(shù)據(jù)
的散點(diǎn)都在
上,則相關(guān)系數(shù)
,B不符合題意;
對(duì)于C. 若隨機(jī)變量 服從二項(xiàng)分布:
, 則
;C不符合題意;
對(duì)于D.若 ,未必有
,例如當(dāng)
時(shí),
,充分性不成立,D符合題意.
所以答案是:D.
【考點(diǎn)精析】本題主要考查了命題的真假判斷與應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)證明: ;
(2)若對(duì)任意 ,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .(Ⅰ)求函數(shù)
的單調(diào)遞增區(qū)間;
(Ⅱ)函數(shù) 在
上的最大值與最小值的差為
,求
的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線 的焦點(diǎn)為
,準(zhǔn)線為
,點(diǎn)
在拋物線
上,已知以點(diǎn)
為圓心,
為半徑的圓
交
于
兩點(diǎn).
(Ⅰ)若 ,
的面積為4,求拋物線
的方程;
(Ⅱ)若 三點(diǎn)在同一條直線
上,直線
與
平行,且
與拋物線
只有一個(gè)公共點(diǎn),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓 :
(
)的焦距與橢圓
:
的短軸長(zhǎng)相等,且
與
的長(zhǎng)軸長(zhǎng)相等,這兩個(gè)橢圓在第一象限的交點(diǎn)為
,直線
經(jīng)過
在
軸正半軸上的頂點(diǎn)
且與直線
(
為坐標(biāo)原點(diǎn))垂直,
與
的另一個(gè)交點(diǎn)為
,
與
交于
,
兩點(diǎn).
(1)求 的標(biāo)準(zhǔn)方程;
(2)求 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取 名同學(xué)(男
人,女
人),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)只能自由選擇其中一道題進(jìn)行解答.選題情況如下表(單位:人):
幾何題 | 代數(shù)題 | 總計(jì) | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計(jì) | 30 | 20 | 50 |
幾何題 | 代數(shù)題 | 總計(jì) | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計(jì) | 30 | 20 | 50 |
附表及公式:
(1)能否據(jù)此判斷有 的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)現(xiàn)從選擇做幾何題的 名女生中,任意抽取兩人,對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩位女生被抽到的人數(shù)為
,求
的分布列和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn) ,焦點(diǎn)在
軸上,離心率為
的橢圓過點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓與 軸的非負(fù)半軸交于點(diǎn)
,過點(diǎn)
作互相垂直的兩條直線,分別交橢圓于點(diǎn)
,
兩點(diǎn),連接
,求
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,底面為等腰梯形的四棱錐 中,
平面
,
為
的中點(diǎn),
,
,
.
(1)證明: 平面
;
(2)若 ,求三棱錐
的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com