【題目】已知函數(shù) .(Ⅰ)求函數(shù) 的單調(diào)遞增區(qū)間;
(Ⅱ)函數(shù) 上的最大值與最小值的差為 ,求 的表達(dá)式.

【答案】解:(Ⅰ)由題意得:所以函數(shù) 的單調(diào)遞增區(qū)間為
(Ⅱ) 由題意得
當(dāng) 時(shí),
當(dāng) 時(shí),
當(dāng) 時(shí),
綜上,
【解析】本題主要考查函數(shù)的單調(diào)性與最值、分段函數(shù)等基礎(chǔ)知識(shí),同時(shí)考查推理論證能力、分析問題和解決問題的能力.分段函數(shù)顧名思義指的是一個(gè)函數(shù)在不同的定義域內(nèi)的函數(shù)表達(dá)式不一樣,有些甚至不是連續(xù)的.這個(gè)在現(xiàn)實(shí)當(dāng)中是很常見的,比如說水的階梯價(jià),購物的時(shí)候買的商品的量不同,商品的單價(jià)也不同等等,這里面都涉及到分段函數(shù).
【考點(diǎn)精析】掌握函數(shù)單調(diào)性的性質(zhì)和函數(shù)的最值及其幾何意義是解答本題的根本,需要知道函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集;利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在 上的函數(shù) ,且 恒成立.
(1)求實(shí)數(shù) 的值;
(2)若 ,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a>b,a>c.△ABC的外接圓半徑為1, ,若邊BC上一點(diǎn)D滿足BD=2DC,且∠BAD=90°,則△ABC的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為30元,并且每件產(chǎn)品須向總公司繳納a元(a為常數(shù),2≤a≤5)的管理費(fèi),根據(jù)多年的統(tǒng)計(jì)經(jīng)驗(yàn),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為x元時(shí),產(chǎn)品一年的銷售量為 (e為自然對(duì)數(shù)的底數(shù))萬件,已知每件產(chǎn)品的售價(jià)為40元時(shí),該產(chǎn)品一年的銷售量為500萬件.經(jīng)物價(jià)部門核定每件產(chǎn)品的售價(jià)x最低不低于35元,最高不超過41元.
(1)求分公司經(jīng)營該產(chǎn)品一年的利潤L(x)萬元與每件產(chǎn)品的售價(jià)x元的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該產(chǎn)品一年的利潤L(x)最大,并求出L(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來隨著我國在教育利研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.伴隨著國內(nèi)市場增速放緩,國內(nèi)確實(shí)力企業(yè)紛紛進(jìn)行海外布局,第二輪企業(yè)出海潮到來,如在智能手機(jī)行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機(jī)公司一直默默拓展海外市場,在海外共設(shè)30多個(gè)分支機(jī)構(gòu),需要國內(nèi)公司外派大量70后、80后中青年員工.該企業(yè)為了解這兩個(gè)年齡層員工是否愿意被外派上作的態(tài)度,按分層抽樣的方式從70后利80后的員工中隨機(jī)調(diào)查了100位,得到數(shù)據(jù)如下表:

愿意被外派

不愿意被外派

合計(jì)

70后

20

20

40

80后

40

20

60

合計(jì)

60

40

100

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

(參考公式: ,其中
(1)根據(jù)查的數(shù)據(jù),是否有 的把握認(rèn)為“是否愿意被外派與年齡有關(guān)”,并說明理由;
(2)該公司參觀駐海外分支機(jī)構(gòu)的交流體驗(yàn)活動(dòng),擬安排4名參與調(diào)查的70后員工參加,70后的員工中有愿意被外派的3人和不愿意被外派的3人報(bào)名參加,現(xiàn)采用隨機(jī)抽樣方法從報(bào)名的員工中選4人,求選到愿意被外派人數(shù)不少于不愿意被外派人數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=1+ +sin x在區(qū)間[-k,k](k>0)上的值域?yàn)閇m,n],則m+n的值是( )
A.0
B.1
C.2
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線 的參數(shù)方程為 為參數(shù)),點(diǎn) 是曲線 上的一動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線 的方程為 .
(Ⅰ)求線段 的中點(diǎn) 的軌跡的極坐標(biāo)方程;
(Ⅱ)求曲線 上的點(diǎn)到直線 的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列判斷錯(cuò)誤的是( )
A.若隨機(jī)變量 服從正態(tài)分布 ,則 ;
B.若 組數(shù)據(jù) 的散點(diǎn)都在 上,則相關(guān)系數(shù) ;
C.若隨機(jī)變量 服從二項(xiàng)分布: , 則 ;
D. 的充分不必要條件;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,該幾何體是由一個(gè)直三棱柱 和一個(gè)正四棱錐 組合而成, ,

(Ⅰ)證明:平面 平面
(Ⅱ)求正四棱錐 的高 ,使得二面角 的余弦值是

查看答案和解析>>

同步練習(xí)冊(cè)答案