【題目】考察下列無(wú)窮數(shù)列,判斷是否有極限,若有,求出極限;若沒(méi)有,請(qǐng)說(shuō)明理由.

1

2

3

【答案】1)極限不存在,理由見(jiàn)解析;(2)極限為;(3)極限不存在.理由見(jiàn)解析.

【解析】

1)根據(jù)時(shí),趨近的常數(shù)不同可知極限不存在;

2)當(dāng)時(shí),可知無(wú)限趨近于,由此求得極限;

3)當(dāng)時(shí),始終等于兩個(gè)值,可知極限不存在.

1)當(dāng)無(wú)限增大時(shí),無(wú)限趨近于,則無(wú)限趨近于;

當(dāng)無(wú)限增大時(shí),無(wú)限趨近于,則無(wú)限趨近于;

當(dāng)無(wú)限增大時(shí),不趨近于一個(gè)確定的常數(shù),該數(shù)列的極限不存在.

2)當(dāng)時(shí),的值小于

當(dāng)時(shí),,即無(wú)限趨近于,

當(dāng)無(wú)限增大時(shí),趨近于一個(gè)確定的常數(shù),該數(shù)列的極限為

3)當(dāng)時(shí),,

當(dāng)n無(wú)限增大時(shí),始終等于兩個(gè)值,該數(shù)列的極限不存在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中志愿者部有男志愿者6人,女志愿者4人,這些人要參加元旦聯(lián)歡會(huì)的服務(wù)工作. 從這些人中隨機(jī)抽取4人負(fù)責(zé)舞臺(tái)服務(wù)工作,另外6人負(fù)責(zé)會(huì)場(chǎng)服務(wù)工作.

(Ⅰ)設(shè)為事件:“負(fù)責(zé)會(huì)場(chǎng)服務(wù)工作的志愿者中包含女志愿者但不包含男志愿者”,求事件發(fā)生的概率.

(Ⅱ)設(shè)表示參加舞臺(tái)服務(wù)工作的女志愿者人數(shù),求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于給定數(shù)列,如果存在實(shí)常數(shù)使得對(duì)于任意都成立,我們稱(chēng)數(shù)列M類(lèi)數(shù)列

1)若,數(shù)列是否為M類(lèi)數(shù)列?若是,指出它對(duì)應(yīng)的實(shí)常數(shù);若不是,請(qǐng)說(shuō)明理由;

2)證明:若數(shù)列M類(lèi)數(shù)列,則數(shù)列也是M類(lèi)數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列中,若是正整數(shù),且,…,則稱(chēng)為“絕對(duì)差數(shù)列”.

1)舉出一個(gè)前5項(xiàng)不為零的“絕對(duì)差數(shù)列”(只要求寫(xiě)出前10項(xiàng));

2)若“絕對(duì)差數(shù)列”中,,數(shù)列滿足,,…,分別判斷當(dāng)時(shí),的極限是否存在?如果存在,求出其極限值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器商場(chǎng)銷(xiāo)售的彩電、U盤(pán)和播放器三種產(chǎn)品.該商場(chǎng)的供貨渠道主要是甲、乙兩個(gè)品牌的二級(jí)代理商.今年9月份,該商場(chǎng)從每個(gè)代理商處各購(gòu)得彩電100臺(tái)、U盤(pán)52個(gè)、播放器180臺(tái).10月份,該商場(chǎng)從每個(gè)代理商處購(gòu)得的產(chǎn)品數(shù)量都是9月份的1.5.現(xiàn)知甲、乙兩個(gè)代理商給出的產(chǎn)品單價(jià)(元)如下頁(yè)表中所示:

彩電

U盤(pán)

播放器

甲代理商單價(jià)(元)

2350

1200

750

乙代理商單價(jià)(元)

2100

920

700

1)計(jì)算,并指出結(jié)果的實(shí)際意義;

2)用矩陣求該商場(chǎng)在這兩個(gè)月中分別支付給兩個(gè)代理商的購(gòu)貨費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在等比數(shù)列{an}中,=2,,=128,數(shù)列{bn}滿足b1=1,b2=2,且{}為等差數(shù)列.

(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;

(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,且直線l經(jīng)過(guò)曲線C的左焦點(diǎn)F.

(1)求直線l的普通方程;

(2)設(shè)曲線C的內(nèi)接矩形的周長(zhǎng)為L(zhǎng),求L的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】銷(xiāo)售某種活海鮮,根據(jù)以往的銷(xiāo)售情況,按日需量(公斤)屬于[0,100),[100,200),[200,300),[300,400),[400,500]進(jìn)行分組,得到如圖所示的頻率分布直方圖.這種海鮮經(jīng)銷(xiāo)商進(jìn)價(jià)成本為每公斤20元,當(dāng)天進(jìn)貨當(dāng)天以每公斤30元進(jìn)行銷(xiāo)售,當(dāng)天未售出的須全部以每公斤10元賣(mài)給冷凍庫(kù).某海鮮產(chǎn)品經(jīng)銷(xiāo)商某天購(gòu)進(jìn)了300公斤這種海鮮,設(shè)當(dāng)天利潤(rùn)為元.

(I)求關(guān)于的函數(shù)關(guān)系式;

(II)結(jié)合直方圖估計(jì)利潤(rùn)不小于800元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線與拋物線相交于兩點(diǎn),與軸交于點(diǎn),且,于點(diǎn).

1)當(dāng)時(shí),求的值;

2)當(dāng)時(shí),求的面積之積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案