【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標原點為極點,x軸的非負半軸為極軸且取相同的單位長度建立極坐標系,已知曲線C的極坐標方程為,且直線l經(jīng)過曲線C的左焦點F.

(1)求直線l的普通方程;

(2)設曲線C的內(nèi)接矩形的周長為L,求L的最大值.

【答案】(1)x+2y+1=0(2)

【解析】

(1)由極坐標化直角坐標的公式可得到曲線C的普通方程,消去參數(shù)t可得到直線普通方程,再代入F點坐標可得到直線方程;(2)橢圓C的內(nèi)接矩形在第一象限的頂點為(,sinθ)內(nèi)接矩形的周長為,化一求最值即可.

(1)因為曲線C的極坐標方程為,即ρ2+ρ2sin2θ=2.

將ρ2=x2+y2,ρsinθ=y(tǒng),代入上式,得

x2+2y2=2,即

所以曲線C的直角坐標方程為

于是c2=a2-b2=1,所以F(-1,0).

消去參數(shù)t,

得直線l的普通方程為

將F(-1,0)代入直線方程得

所以直線l的普通方程為x+2y+1=0.

(2)設橢圓C的內(nèi)接矩形在第一象限的頂點為(,sinθ)(),

所以橢圓C的內(nèi)接矩形的周長為(其中),故橢圓C的內(nèi)接矩形的周長的最大值

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市調研考試后,某校對甲、乙兩個文科班的數(shù)學考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.

優(yōu)秀

非優(yōu)秀

合計

甲班

10

乙班

30

合計

110

1)請完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認為“成績與班級有關系”;

參考公式與臨界值表:.

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足:,,其中為實數(shù),為正整數(shù).

)證明:對任意的實數(shù),數(shù)列不是等比數(shù)列;

)證明:當時,數(shù)列是等比數(shù)列;

)設為數(shù)列的前項和,是否存在實數(shù),使得對任意正整數(shù),都有?若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】考察下列無窮數(shù)列,判斷是否有極限,若有,求出極限;若沒有,請說明理由.

1

2

3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,側棱垂直于底面,∠BAC=120°,AC=AB=2,AA1=3.

(1)求三棱柱ABC-A1B1C1的體積;

(2)若M是棱BC的一個靠近點C的三等分點,求證:AM平面ABB1A1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在等比數(shù)列{an}中,=2,,=128,數(shù)列{bn}滿足b1=1,b2=2,且{}為等差數(shù)列.

(1)求數(shù)列{an}和{bn}的通項公式;

(2)求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標原點為極點,x軸的非負半軸為極軸且取相同的單位長度建立極坐標系,已知曲線C的極坐標方程為,且直線l經(jīng)過曲線C的左焦點F.

(1)求直線l的普通方程;

(2)設曲線C的內(nèi)接矩形的周長為L,求L的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩個不同的單位向量之間滿足關系:,其中

1)若,求的解析式;

2能否和垂直?能否和平行?若不能,則說明理由;若能,則求出對應的k值;

3)求夾角的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正三棱錐的高為6,內(nèi)切球(與四個面都相切)表面積為,則其底面邊長為( )

A. 18 B. 12 C. D.

查看答案和解析>>

同步練習冊答案