【題目】某水產(chǎn)養(yǎng)殖基地要將一批海鮮用汽車從所在城市甲運(yùn)至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且運(yùn)費(fèi)由水產(chǎn)養(yǎng)殖基地承擔(dān).若水產(chǎn)養(yǎng)殖基地恰能在約定日期(×月×日)將海鮮送達(dá),則銷售商一次性支付給水產(chǎn)養(yǎng)殖基地萬(wàn)元;若在約定日期前送到,每提前一天銷售商將多支付給水產(chǎn)養(yǎng)殖基地萬(wàn)元;若在約定日期后送到,每遲到一天銷售商將少支付給水產(chǎn)養(yǎng)殖基地萬(wàn)元.為保證海鮮新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送海鮮,已知下表內(nèi)的信息:

統(tǒng)計(jì)信息

汽車

行駛路線

不堵車的情況下到達(dá)城市乙所需時(shí)間(天)

堵車的情況下到達(dá)城市乙所需時(shí)間(天)

堵車的概率

運(yùn)費(fèi)(萬(wàn)元)

公路

公路

(注:毛利潤(rùn)銷售商支付給水產(chǎn)養(yǎng)殖基地的費(fèi)用運(yùn)費(fèi))

)記汽車走公路時(shí)水產(chǎn)養(yǎng)殖基地獲得的毛利潤(rùn)為(單位:萬(wàn)元),求的分布列和數(shù)學(xué)期望

(Ⅱ)假設(shè)你是水產(chǎn)養(yǎng)殖基地的決策者,你選擇哪條公路運(yùn)送海鮮有可能讓水產(chǎn)養(yǎng)殖基地獲得的毛利潤(rùn)更多?

【答案】(Ⅰ)見(jiàn)解析, 萬(wàn)元;(Ⅱ)走公路可讓水產(chǎn)養(yǎng)殖基地獲得更多利潤(rùn).

【解析】試題分析:

)根據(jù)題意得到不堵車時(shí)萬(wàn)元,堵車時(shí)萬(wàn)元,結(jié)合題目中給出的概率得到隨機(jī)變量的分布列,求得萬(wàn)元。)設(shè)設(shè)走公路利潤(rùn)為,同)中的方法可得到隨機(jī)變量的分布列,求得萬(wàn)元,故應(yīng)選擇走公路可讓水產(chǎn)養(yǎng)殖基地獲得更多利潤(rùn)。

試題解析:

I由題意知,不堵車時(shí)萬(wàn)元,堵車時(shí)萬(wàn)元。

隨機(jī)變量的分布列為

萬(wàn)元.

II設(shè)走公路利潤(rùn)為,

由題意得,不堵車時(shí)萬(wàn)元, 萬(wàn)元,

隨機(jī)變量的分布列為:

萬(wàn)元,

走公路可讓水產(chǎn)養(yǎng)殖基地獲得更多利潤(rùn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),.

(1)已畫(huà)出函數(shù)軸左側(cè)的圖像,如圖所示,請(qǐng)補(bǔ)出完整函數(shù)的圖像,并根據(jù)圖像寫(xiě)出函數(shù)的增區(qū)間;

⑵寫(xiě)出函數(shù)的解析式和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn=1(n∈N),數(shù)列{bn}是公差d不等于0的等差數(shù)列,且滿足:b1=,b2,b5,ba14成等比數(shù)列.

(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;

(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的離心率為,且橢圓經(jīng)過(guò)點(diǎn),已知點(diǎn),過(guò)點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn), 關(guān)于軸對(duì)稱.

(1)求的方程;

(2)證明: 三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為矩形, 平面, , 中點(diǎn).

(I)證明: 平面

(II)證明: 平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 分別是橢圓的左、右焦點(diǎn), 是橢圓的頂點(diǎn), 是直線與橢圓的另一個(gè)交點(diǎn), .

(1)求橢圓的離心率;

(2)已知的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.

(1)求證:

(2)若中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中.設(shè)

)若,,求方程在區(qū)間內(nèi)的解集.

)若函數(shù)滿足:圖象關(guān)于點(diǎn)對(duì)稱,在處取得最小值,試確定、應(yīng)滿足的與之等價(jià)的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】提高過(guò)江大橋的車輛通行的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)

的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),就會(huì)造成堵塞,此時(shí)車流速度為0;當(dāng)

車流密度不超過(guò)20輛/千米時(shí),車流速度為60千米/小時(shí).研究表明:當(dāng)時(shí),

車流速度是車流密度的一次函數(shù).

(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;

(2)如果車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù)) (單位:輛/小時(shí)),那么當(dāng)車流密度為多大時(shí),車流量可以達(dá)到最大,并求出最大值.(精確到輛/小時(shí)).

查看答案和解析>>

同步練習(xí)冊(cè)答案