【題目】某中學舉行一次“環(huán)保知識競賽”,全校學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數(shù),滿分為分)作為樣本進行統(tǒng)計,請根據(jù)下面尚未完成并有局部污損的樣本的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:

)寫出 , 的值.

)在選取的樣本中,從競賽成績是分以上(含分)的同學中隨機抽取名同學到廣場參加環(huán)保知識的志愿宣傳活動,求所抽取的名同學來自同一組的概率.

)在()的條件下,設(shè)表示所抽取的名同學中來自第組的人數(shù),求的分布列及其數(shù)學期望.

組別

分組

頻數(shù)

頻率

合計

【答案】, , , .(.(見解析.

【解析】試題分析:利用頻率= ,以及表示頻率分布直方圖的縱坐標即可求出a,b,x,y;

(2)由(1)可知第四組的人數(shù),已知第五組的人數(shù)是2,利用組合的計算公式即可求出從這6人中任選2人的種數(shù),再分兩類分別求出所選的兩人來自同一組的情況,利用互斥事件的概率和古典概型的概率計算公式即可得出;
(3)由(2)可知,ξ的可能取值為0,1,2,再利用組合的計算公式及古典概型的計算公式、數(shù)學期望的計算公式即可得出.

試題解析:)由題意可知 ,

)由題意可知,第組有人,第組有人,共人.從競賽成績是分以上(含分)的同學中隨機抽取名同學有種情況.

設(shè)事件:隨機抽取的名同學來自同一組,則

故隨機抽取的名同學來自同一組的概率是

)由()可知, 的可能的值為 , ,則:

,

所以, 的分布列為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,橢圓 的長軸長為4,離心率為.

(1)求橢圓的標準方程;

(2)過右焦點作一條不與坐標軸平行的直線,若交橢圓、兩點,點關(guān)于原點的對稱點為,求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),

(Ⅰ)若,求的極小值;

(Ⅱ)在(Ⅰ)的條件下,是否存在實常數(shù),使得?若存在,求出的值.若不存在,說明理由;

(Ⅲ)設(shè)有兩個零點,且成等差數(shù)列,試探究值的符號.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)若曲線與直線相切于點,求點的坐標.

)令,當時,求的單調(diào)區(qū)間.

)當,證明:當

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知短軸長為2的橢圓,直線的橫、縱截距分別為,且原點到直線的距離為

1)求橢圓的方程;

2)直線經(jīng)過橢圓的右焦點且與橢圓交于兩點,若橢圓上存在一點滿足,求直線的方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2015年12月10日,我國科學家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻獲得諾貝爾醫(yī)學獎,以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標準療法,目前,國內(nèi)青蒿人工種植發(fā)展迅速,調(diào)查表明,人工種植的青蒿的長勢與海撥高度、土壤酸堿度、空氣濕度的指標有極強的相關(guān)性,現(xiàn)將這三項的指標分別記為,并對它們進行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標的值評定人工種植的青蒿的長勢等級,若,則長勢為一級;若,則長勢為二極;若,則長勢為三級,為了了解目前人工種植的青蒿的長勢情況,研究人員隨機抽取了10塊青蒿人工種植地,得到如下結(jié)果:

種植地編號

種植地編號

1若該地有青蒿人工種植地180個,試估計該地中長勢等級為三級的個數(shù);

2從長勢等級為一級的青蒿人工種植地中隨機抽取兩個,求這兩個人工種植地的綜合指標均為4個概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)的單調(diào)區(qū)間;

(2),都有,求實數(shù)的取值范圍;

(3)證明: ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(I)若函數(shù)處取得極值,求實數(shù)的值;并求此時上的最大值;

()若函數(shù)不存在零點,求實數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,在橢圓上,直線過橢圓的右焦點且與橢圓相交于兩點.

1的方程;

2軸上是否存在定點,使得為定值?若存在,求出定點的坐標,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案