【題目】2015年12月10日,我國科學家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻獲得諾貝爾醫(yī)學獎,以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標準療法,目前,國內(nèi)青蒿人工種植發(fā)展迅速,調(diào)查表明,人工種植的青蒿的長勢與海撥高度、土壤酸堿度、空氣濕度的指標有極強的相關(guān)性,現(xiàn)將這三項的指標分別記為,并對它們進行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標的值評定人工種植的青蒿的長勢等級,若,則長勢為一級;若,則長勢為二極;若,則長勢為三級,為了了解目前人工種植的青蒿的長勢情況,研究人員隨機抽取了10塊青蒿人工種植地,得到如下結(jié)果:
種植地編號 | |||||
種植地編號 | |||||
(1)若該地有青蒿人工種植地180個,試估計該地中長勢等級為三級的個數(shù);
(2)從長勢等級為一級的青蒿人工種植地中隨機抽取兩個,求這兩個人工種植地的綜合指標均為4個概率.
科目:高中數(shù)學 來源: 題型:
【題目】給定一個數(shù)列{an},在這個數(shù)列里,任取m(m≥3,m∈N*)項,并且不改變它們在數(shù)列{an}中的先后次序,得到的數(shù)列稱為數(shù)列{an}的一個m階子數(shù)列.已知數(shù)列{an}的通項公式為an= (n∈N*,a為常數(shù)),等差數(shù)列a2,a3,a6是數(shù)列{an}的一個3階子數(shù)列.
(1)求a的值;
(2)等差數(shù)列b1,b2,…,bm是{an}的一個m (m≥3,m∈N*) 階子數(shù)列,且b1= (k為常數(shù),k∈N*,k≥2),求證:m≤k+1;
(3)等比數(shù)列c1,c2,…,cm是{an}的一個m (m≥3,m∈N*) 階子數(shù)列,
求證:c1+c2+…+cm≤2- .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“拋階磚”是國外游樂場的典型游戲之一.參與者只需將手上的“金幣”(設(shè)“金幣”的半徑為1)拋向離身邊若干距離的階磚平面上,拋出的“金幣”若恰好落在任何一個階磚(邊長為2.1的正方形)的范圍內(nèi)(不與階磚相連的線重疊),便可獲大獎.不少人被高額獎金所吸引,紛紛參與此游戲,但很少有人得到獎品,請用所學的概率知識解釋這是為什么.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪80元,每單抽成4元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成6元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機抽取一名送餐員,并分別記錄其50天的送餐單數(shù),得到如下頻數(shù)表:
甲公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 10 | 15 | 10 | 10 | 5 |
乙公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 5 | 10 | 10 | 20 | 5 |
(1)現(xiàn)從甲公司記錄的50天中隨機抽取3天,求這3天送餐單數(shù)都不小于40的概率;
(2)若將頻率視為概率,回答下列兩個問題:
①記乙公司送餐員日工資為(單位:元),求的分布列和數(shù)學期望;
②小王打算到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請利用所學的統(tǒng)計學知識為小王作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學舉行一次“環(huán)保知識競賽”,全校學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數(shù),滿分為分)作為樣本進行統(tǒng)計,請根據(jù)下面尚未完成并有局部污損的樣本的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:
(Ⅰ)寫出, , , 的值.
(Ⅱ)在選取的樣本中,從競賽成績是分以上(含分)的同學中隨機抽取名同學到廣場參加環(huán)保知識的志愿宣傳活動,求所抽取的名同學來自同一組的概率.
(Ⅲ)在(Ⅱ)的條件下,設(shè)表示所抽取的名同學中來自第組的人數(shù),求的分布列及其數(shù)學期望.
組別 | 分組 | 頻數(shù) | 頻率 |
第組 | |||
第組 | |||
第組 | |||
第組 | |||
第組 | |||
合計 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是邊長為的正方形,平面,,,與平面所成角為.
(Ⅰ)求證:平面.
(Ⅱ)求二面角的余弦值.
(Ⅲ)設(shè)點是線段上一個動點,試確定點的位置,使得平面,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)
(Ⅰ)求不等式的解集;
(Ⅱ)已知函數(shù)的最小值為,若實數(shù)且,求的
最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省電視臺為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示,其中一個數(shù)字被污損.
(I)求東部觀眾平均人數(shù)超過西部觀眾平均人數(shù)的概率.
(II)節(jié)目的播出極大激發(fā)了觀眾隨機統(tǒng)計了4位觀眾的周均學習成語知識的的時間y (單位:小時)與年齡x(單位:歲),并制作了對照表(如下表所示):
由表中數(shù)據(jù)分析,x,y呈線性相關(guān)關(guān)系,試求線性回歸方程,并預測年齡為60歲觀眾周均學習成語知識的時間.
參考數(shù)據(jù):線性回歸方程中的最小二乘估計分別是.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面, , , , 分別為, 的中點,點在線段上.
(1)求證: 平面;
(2)如果直線與平面所成的角和直線與平面所成的角相等,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com