【題目】已知,用符號(hào)表示不超過(guò)的最大整數(shù),若函數(shù)有且僅有個(gè)零點(diǎn),則的取值范圍是( )
A.B.C.D.
【答案】A
【解析】
由f(x)=0得a,令g(x),分x>0和x<0的情況討論,作出g(x)的圖象,利用數(shù)形結(jié)合即可得到a的取值范圍.
由f(x)a=0得a,
設(shè)g(x),
則當(dāng)0<x<1,[x]=0,此時(shí)g(x)=0,
當(dāng)1≤x<2,[x]=1,此時(shí)g(x),此時(shí)g(x)≤1,
當(dāng)2≤x<3,[x]=2,此時(shí)g(x),此時(shí)g(x)≤1,
當(dāng)3≤x<4,[x]=3,此時(shí)g(x),此時(shí)g(x)≤1,
當(dāng)4≤x<5,[x]=4,此時(shí)g(x),此時(shí)g(x)≤1,
若當(dāng)﹣1≤x<0,[x]=﹣1,此時(shí)g(x),此時(shí)g(x)1,
若當(dāng)﹣2≤x<﹣1,[x]=﹣2,此時(shí)g(x),此時(shí)1≤g(x)2,
若當(dāng)﹣3≤x<﹣2,[x]=﹣3,此時(shí)g(x),此時(shí)1≤g(x),
若當(dāng)﹣4≤x<﹣3,[x]=﹣4,此時(shí)g(x),此時(shí)1≤g(x),
作出函數(shù)g(x)的圖象,
要使f(x)a有且僅有兩個(gè)零點(diǎn),
即函數(shù)g(x)=a有且僅有兩個(gè)零點(diǎn),
則由圖象可知或,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在實(shí)數(shù)集上的奇函數(shù)滿足,且當(dāng)時(shí), ,
則下列四個(gè)命題:①;
②函數(shù)的最小正周期為;
③當(dāng)時(shí),方程有個(gè)根;
④方程有個(gè)根.
其中真命題的序號(hào)為________________________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)班級(jí),一次數(shù)學(xué)考試的分?jǐn)?shù)排序如下:
甲班 51 54 59 60 64 68 68 68 70 71
72 72 74 76 77 78 79 79 80 80
82 85 85 86 86 87 87 87 88 89
90 90 91 96 97 98 98 98 100 100
乙班 61 63 63 66 70 71 71 73 75 75
76 79 79 80 80 80 81 81 82 82
83 83 83 84 84 84 85 85 85 85
85 85 86 87 87 88 90 91 94 98
請(qǐng)你就這次考試成績(jī),對(duì)兩個(gè)班級(jí)的數(shù)學(xué)學(xué)習(xí)情況進(jìn)行評(píng)價(jià)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面邊長(zhǎng)為a,E是PC的中點(diǎn).
(Ⅰ)求證:PA∥平面BDE;
(Ⅱ)平面PAC⊥平面BDE;
(Ⅲ)若二面角E-BD-C為30°,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,圓經(jīng)過(guò)伸縮變換后得到曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長(zhǎng)度,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程及直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)是上一動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某投資公司對(duì)以下兩個(gè)項(xiàng)目進(jìn)行前期市場(chǎng)調(diào)研:項(xiàng)目:通信設(shè)備.根據(jù)調(diào)研,投資到該項(xiàng)目上,所有可能結(jié)果為:獲利、損失、不賠不賺,且這三種情況發(fā)生的概率分別為;項(xiàng)目:新能源汽車.根據(jù)調(diào)研,投資到該項(xiàng)目上,所有可能結(jié)果為:獲利、虧損,且這兩種情況發(fā)生的概率分別為.經(jīng)測(cè)算,當(dāng)投入兩個(gè)項(xiàng)目的資金相等時(shí),它們所獲得的平均收益(即數(shù)學(xué)期望)也相等.
(1)求的值;
(2)若將萬(wàn)元全部投到其中的一個(gè)項(xiàng)目,請(qǐng)你從投資回報(bào)穩(wěn)定性考慮,為投資公司選擇一個(gè)合理的項(xiàng)目,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表中的數(shù)表為“森德拉姆篩”(森德拉姆,東印度學(xué)者),其特點(diǎn)是每行每列都成等差數(shù)列.
2 | 3 | 4 | 5 | 6 | 7 | … |
3 | 5 | 7 | 9 | 11 | 13 | … |
4 | 7 | 10 | 13 | 16 | 19 | … |
5 | 9 | 13 | 17 | 21 | 25 | … |
6 | 11 | 16 | 21 | 26 | 31 | … |
7 | 13 | 19 | 25 | 31 | 37 | … |
… | … | … | … | … | … | … |
在上表中,2017出現(xiàn)的次數(shù)為( )
A. 18 B. 36 C. 48 D. 72
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)若直線且曲線在A處的切線與在B處的切線相互平行,求a的取值范圍;
(Ⅱ)設(shè)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn)且若不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.在極坐標(biāo)系中有射線和曲線.
(1)判斷射線和曲線公共點(diǎn)的個(gè)數(shù);
(2)若射線與曲線 交于兩點(diǎn),且滿足,求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com