【題目】如圖所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面邊長(zhǎng)為a,EPC的中點(diǎn).

(Ⅰ)求證:PA∥平面BDE;

(Ⅱ)平面PAC⊥平面BDE

(Ⅲ)若二面角E-BD-C為30°,求四棱錐P-ABCD的體積.

【答案】(I)詳見(jiàn)解析;(II)詳見(jiàn)解析;(III).

【解析】

(Ⅰ)連接,證明.然后證明平面

(Ⅱ)證明,,推出平面,然后證明平面⊥平面

(Ⅲ)取中點(diǎn),連接,說(shuō)明為二面角的平面角,求出,,.然后求解幾何體的體積

解:(Ⅰ)證明:連接OE,如圖所示.

O、E分別為ACPC中點(diǎn),

OEPA

OEBDE,PA平面BDE,

PA∥平面BDE

(Ⅱ)證明:∵PO⊥平面ABCD,∴POBD

在正方形ABCD中,BDAC

又∵POAC=O,∴BD⊥平面PAC

又∵BD平面BDE,∴平面PAC⊥平面BDE

(Ⅲ)取OC中點(diǎn)F,連接EF

EPC中點(diǎn),

EF為△POC的中位線,∴EFPO

又∵PO⊥平面ABCD

EF⊥平面ABCD,

OFBD,∴OEBD

∴∠EOF為二面角E-BD-C的平面角,

∴∠EOF=30°.

RtOEF中,

OF=OC=AC=a,

EF=OFtan30°=a,∴OP=2EF=a

VP-ABCD=×a2×a=a3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)若,試判斷函數(shù)的零點(diǎn)個(gè)數(shù);

(2)若函數(shù)上為增函數(shù),求整數(shù)的最大值.

(可能要用到的數(shù)據(jù): , ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f

1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;

2)在(1)的條件下,求函數(shù)的圖象在點(diǎn)處的切線方程;

3)若不等式恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,CC1底面ABC,ACCB,點(diǎn)MN分別是B1C1BC的中點(diǎn).

(1)求證:MB平面AC1N;

(2)求證:AC⊥MB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】AC為對(duì)稱(chēng)軸的拋物線的一部分,點(diǎn)B到邊AC的距離為2km,另外兩邊AC,BC的長(zhǎng)度分別為8km,2 km.現(xiàn)欲在此地塊內(nèi)建一形狀為直角梯形DECF的科技園區(qū).

(1)求此曲邊三角形地塊的面積;
(2)求科技園區(qū)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】綠色出行越來(lái)越受到社會(huì)的關(guān)注,越來(lái)越多的消費(fèi)者對(duì)新能源汽車(chē)感興趣但是消費(fèi)者比較關(guān)心的問(wèn)題是汽車(chē)的續(xù)駛里程某研究小組從汽車(chē)市場(chǎng)上隨機(jī)抽取20輛純電動(dòng)汽車(chē)調(diào)查其續(xù)駛里程單次充電后能行駛的最大里程,被調(diào)查汽車(chē)的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計(jì)結(jié)果分成5組: ,繪制成如圖所示的頻率分布直方圖.

求直方圖中m的值;

求本次調(diào)查中續(xù)駛里程在的車(chē)輛數(shù);

若從續(xù)駛里程在的車(chē)輛中隨機(jī)抽取2輛車(chē),求其中恰有一輛車(chē)?yán)m(xù)駛里程在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|2x |,其在區(qū)間[0,1]上單調(diào)遞增,則a的取值范圍為(
A.[0,1]
B.[﹣1,0]
C.[﹣1,1]
D.[﹣ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某上市股票在30天內(nèi)每股的交易價(jià)格(元)與時(shí)間(天)組成有序數(shù)對(duì),點(diǎn)落在圖中的兩條線段上;該股票在30天內(nèi)的日交易量(萬(wàn)股)與時(shí)間(天)的部分?jǐn)?shù)據(jù)如下表所示,且滿足一次函數(shù)關(guān)系,

4

10

16

22

(萬(wàn)股)

36

30

24

18

那么在這30天中第幾天日交易額最大( )

A. 10 B. 15 C. 20 D. 25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】邗江中學(xué)高二年級(jí)某班某小組共10人,利用寒假參加義工活動(dòng),已知參加義工活動(dòng)次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會(huì).

(1)記“選出2人參加義工活動(dòng)的次數(shù)之和為4”為事件,求事件發(fā)生的概率;

(2)設(shè)為選出2人參加義工活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案