【題目】在直角坐標系中,圓經(jīng)過伸縮變換后得到曲線以坐標原點為極點,軸的正半軸為極軸,并在兩種坐標系中取相同的單位長度,建立極坐標系,直線的極坐標方程為

(1)求曲線的直角坐標方程及直線的直角坐標方程;

(2)設點上一動點,求點到直線的距離的最大值.

【答案】(1),;(2)

【解析】

Ⅰ)由經(jīng)過伸縮變換,可得曲線的方程,由極坐標方程可得直線的直角坐標方程.

Ⅱ)因為橢圓的參數(shù)方程為 為參數(shù)),所以可設點,

由點到直線的距離公式,點到直線的距離為由三角函數(shù)性質(zhì)可求點到直線的距離的最大值.

Ⅰ)由經(jīng)過伸縮變換,可得曲線的方程為,即,由極坐標方程可得直線的直角坐標方程為

Ⅱ)因為橢圓的參數(shù)方程為 為參數(shù)),所以可設點,

由點到直線的距離公式,點到直線的距離為(其中,),由三角函數(shù)性質(zhì)知,當時,點到直線的距離有最大值

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某新成立的汽車租賃公司今年年初用102萬元購進一批新汽車,在使用期間每年有20萬元的收入,并立即投入運營,計劃第一年維修、保養(yǎng)費用1萬元,從第二年開始,每年所需維修、保養(yǎng)費用比上一年增加1萬元,該批汽車使用后同時該批汽車第年底可以以萬元的價格出售.

(1)求該公司到第年底所得總利潤(萬元)關于(年)的函數(shù)解析式,并求其最大值;

(2)為使經(jīng)濟效益最大化,即年平均利潤最大,該公司應在第幾年底出售這批汽車?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為,(為參數(shù)),圓的標準方程為.以坐標原點為極點, 軸正半軸為極軸建立極坐標系.

(1)求直線和圓的極坐標方程;

(2)若射線與的交點為,與圓的交點為,且點恰好為線段的中點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量(單位:噸)和年利潤(單位:萬元)的影響.對近六年的年宣傳費和年銷售量)的數(shù)據(jù)作了初步統(tǒng)計,得到如下數(shù)據(jù):

年份

年宣傳費(萬元)

年銷售量(噸)

經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(萬元)與年銷售量(噸)之間近似滿足關系式).對上述數(shù)據(jù)作了初步處理,得到相關的值如表:

1)根據(jù)所給數(shù)據(jù),求關于的回歸方程;

2)已知這種產(chǎn)品的年利潤,的關系為若想在年達到年利潤最大,請預測年的宣傳費用是多少萬元?

附:對于一組數(shù)據(jù),…,,其回歸直線中的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一種魚的身體吸收汞,一定量身體中汞的含量超過其體重的1.00ppm(即百萬分之一)的魚被人食用后,就會對人體產(chǎn)生危害.30條魚的樣本中發(fā)現(xiàn)的汞含量(單位:ppm)如下:

0.07 0.24 0.95 0.98 1.02 0.98 1.37 1.40 0.39 1.02

1.44 1.58 0.54 1.08 0.61 0.72 1.20 1.14 1.62 1.68

1.85 1.20 0.81 0.82 0.84 1.29 1.26 2.10 0.91 1.31

1)請用合適的統(tǒng)計圖描述上述數(shù)據(jù),并分析這30條魚的汞含量的分布特點;

2)求出上述樣本數(shù)據(jù)的平均數(shù)和標準差;

3)從實際情況看,許多魚的汞含量超標的原因是這些魚在出售之前沒有被檢測過你認為每批這種魚的平均承含量都比1.00ppm大嗎?

4)在上述樣本中,有多少條魚的汞含量在以平均數(shù)為中心、2倍標準差的范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,用符號表示不超過的最大整數(shù),若函數(shù)有且僅有個零點,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;

)已知f(x)x=1處取得極大值.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一個圓錐的底面半徑為1,高為3,在圓錐中有一個半徑為x的內(nèi)接圓柱.

(1)試用x表示圓柱的高;

(2)x為何值時,圓柱的側面積最大,最大側面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,是橢圓上的兩個不同點.

(1)若,且點所在直線方程為,求的值;

(2)若直線的斜率之積為,線段上有一點滿足,連接并廷長交橢圓于點,求的值.

查看答案和解析>>

同步練習冊答案