【題目】定義在實數(shù)集上的奇函數(shù)滿足,且當(dāng)時, ,

則下列四個命題:①;

②函數(shù)的最小正周期為;

③當(dāng)時,方程個根;

④方程個根.

其中真命題的序號為________________________

【答案】①③④

【解析】

運(yùn)用代換法可得,可得函數(shù)周期為4,即可計算

由對稱性作出的圖像,以及直線 的圖像,找出它們的交點(diǎn)個數(shù),即可得到真命題的個數(shù).

由已知可得,

,即函數(shù)的最小正周期為4;

且當(dāng)時, ,

所以

在區(qū)間上,由當(dāng)時, ,

可得方程有一個解為

在實數(shù)集上為奇函數(shù),

,

則可得函數(shù)的圖像關(guān)于直線對稱,

則在區(qū)間上,可得方程有一個解為,

即在區(qū)間上,方程有兩個解,

由函數(shù)為奇函數(shù)可得,在區(qū)間上,方程無解,

綜上可得在區(qū)間上,方程有兩個解,

則當(dāng)時,方程=個根,

作出的圖像,可得共有5個交點(diǎn),可得方程個根.

則②錯誤,①③④正確,

故答案為:①③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 的內(nèi)角 的對邊分別為 已知

(1)求角 ;

(2)若 ,求 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1,曲線C2

1)指出C1,C2各是什么曲線,并說明C1C2公共點(diǎn)的個數(shù);

2)若把C1C2上各點(diǎn)的縱坐標(biāo)都壓縮為原來的一半,分別得到曲線,.寫出的參數(shù)方程.公共點(diǎn)的個數(shù)和C1C2公共點(diǎn)的個數(shù)是否相同?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

(1)當(dāng)時,求函數(shù)上的最值;

(2)若函數(shù)上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某新成立的汽車租賃公司今年年初用102萬元購進(jìn)一批新汽車,在使用期間每年有20萬元的收入,并立即投入運(yùn)營,計劃第一年維修、保養(yǎng)費(fèi)用1萬元,從第二年開始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加1萬元,該批汽車使用后同時該批汽車第年底可以以萬元的價格出售.

(1)求該公司到第年底所得總利潤(萬元)關(guān)于(年)的函數(shù)解析式,并求其最大值;

(2)為使經(jīng)濟(jì)效益最大化,即年平均利潤最大,該公司應(yīng)在第幾年底出售這批汽車?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,其中為自然對數(shù)的底數(shù).

(Ⅰ)設(shè)(其中的導(dǎo)函數(shù)),判斷上的單調(diào)性;

(Ⅱ)若無零點(diǎn),試確定正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺中,,G,H分別為ACBC的中點(diǎn).求證:平面FGH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到下表(單位:人):

經(jīng)常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

(2)現(xiàn)從所有抽取的30歲以上的網(wǎng)民中利用分層抽樣抽取5人,

求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

從這5人中,在隨機(jī)選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,用符號表示不超過的最大整數(shù),若函數(shù)有且僅有個零點(diǎn),則的取值范圍是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案