【題目】2020110日,引發(fā)新冠肺炎疫情的COVID-9病毒基因序列公布后,科學(xué)家們便開始了病毒疫苗的研究過程.但是類似這種病毒疫苗的研制需要科學(xué)的流程,不是一朝一夕能完成的,其中有一步就是做動(dòng)物試驗(yàn).已知一個(gè)科研團(tuán)隊(duì)用小白鼠做接種試驗(yàn),檢測接種疫苗后是否出現(xiàn)抗體.試驗(yàn)設(shè)計(jì)是:每天接種一次,3天為一個(gè)接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)抗體的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)抗體與上次接種無關(guān).

1)求一個(gè)接種周期內(nèi)出現(xiàn)抗體次數(shù)的分布列;

2)已知每天接種一次花費(fèi)100元,現(xiàn)有以下兩種試驗(yàn)方案:

①若在一個(gè)接種周期內(nèi)連續(xù)2次出現(xiàn)抗體即終止本周期試驗(yàn),進(jìn)行下一接種周期,試驗(yàn)持續(xù)三個(gè)接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元;

②若在一個(gè)接種周期內(nèi)出現(xiàn)2次或3次抗體,該周期結(jié)束后終止試驗(yàn),已知試驗(yàn)至多持續(xù)三個(gè)接種周期,設(shè)此種試驗(yàn)方式的花費(fèi)為元.

比較隨機(jī)變量的數(shù)學(xué)期望的大小.

【答案】1)分布列答案見解析.(2

【解析】

1)由題意可知,隨機(jī)變量服從二項(xiàng)分布,故,然后列出分布列即可

2)根據(jù)題意分別算出的期望即可.

(1)由題意可知,隨機(jī)變量服從二項(xiàng)分布,

.

的分布列為

0

1

2

3

2)①設(shè)一個(gè)接種周期的接種費(fèi)用為元,則可能的取值為200300,

因?yàn)?/span>,

所以.

所以三個(gè)接種周期的平均花費(fèi)為.

②隨機(jī)變量可能的取值為300,600,900

設(shè)事件為“在一個(gè)接種周期內(nèi)出現(xiàn)2次或3次抗體”,由(1)知,.

所以,

,

,

所以.

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)證明:當(dāng)a3時(shí),函數(shù)有且只有兩個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形與等腰直角三角形所在的平面互相垂直. ,,.

(1)求證:;

(2)求證:平面平面;

(3)線段上是否存在點(diǎn),使平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】()(2017·衡水二模)某商場在元旦舉行購物抽獎(jiǎng)促銷活動(dòng),規(guī)定顧客從裝有編號0,1,2,3,4的五個(gè)相同小球的抽獎(jiǎng)箱中一次任意摸出兩個(gè)小球,若取出的兩個(gè)小球的編號之和等于7則中一等獎(jiǎng),等于65則中二等獎(jiǎng),等于4則中三等獎(jiǎng),其余結(jié)果為不中獎(jiǎng).

(1)求中二等獎(jiǎng)的概率.

(2)求不中獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 命題“若,則”的否命題是“若,則

B. 命題“,”的否定是“

C. 處有極值”是“”的充要條件

D. 命題“若函數(shù)有零點(diǎn),則“”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)ae2x+(a﹣2) exx.

(1)討論的單調(diào)性;

(2)若有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的最大值;

(2)當(dāng)時(shí),函數(shù)有最小值. 的最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,斜邊,為直角邊上的一點(diǎn),將沿直線折疊至的位置,使得點(diǎn)在平面外,且點(diǎn)在平面上的射影在線段上設(shè),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面平面, 底面為梯形, ,.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面;

(Ⅲ)若是棱的中點(diǎn),求證:對于棱上任意一點(diǎn),都不平行

查看答案和解析>>

同步練習(xí)冊答案