【題目】如圖,在等腰中,斜邊,為直角邊上的一點,將沿直線折疊至的位置,使得點在平面外,且點在平面上的射影在線段上設(shè),則的取值范圍是( )
A. B. C. D.
【答案】B
【解析】
推導出AC=BC=1,∠ACB=90°,AC1=AC=1,CD=C1D∈(0,1),∠AC1D=90°,CH⊥平面ABC,從而AH<AC1=1,當CD=1時,B與D重合,AH,當CD<1時,AH,由此能求出x的取值范圍.
解:∵在等腰Rt△ABC中,斜邊AB,D為直角邊BC上的一點,
∴AC=BC=1,∠ACB=90°,
將△ACD沿直AD折疊至△AC1D的位置,使得點C1在平面ABD外,
且點C1在平面ABD上的射影H在線段AB上,設(shè)AH=x,
∴AC1=AC=1,CD=C1D∈(0,1),∠AC1D=90°,
CH⊥平面ABC,
∴AH<AC1=1,故排除選項A和選項C;
當CD=1時,B與D重合,AH,
當CD<1時,AH,
∵D為直角邊BC上的一點,
∴CD∈(0,1),∴x的取值范圍是(,1).
故選:B.
科目:高中數(shù)學 來源: 題型:
【題目】已知,.
(1)若,判斷函數(shù)在的單調(diào)性;
(2)證明: ,;
(3)設(shè) ,對,,有恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年1月10日,引發(fā)新冠肺炎疫情的COVID-9病毒基因序列公布后,科學家們便開始了病毒疫苗的研究過程.但是類似這種病毒疫苗的研制需要科學的流程,不是一朝一夕能完成的,其中有一步就是做動物試驗.已知一個科研團隊用小白鼠做接種試驗,檢測接種疫苗后是否出現(xiàn)抗體.試驗設(shè)計是:每天接種一次,3天為一個接種周期.已知小白鼠接種后當天出現(xiàn)抗體的概率為,假設(shè)每次接種后當天是否出現(xiàn)抗體與上次接種無關(guān).
(1)求一個接種周期內(nèi)出現(xiàn)抗體次數(shù)的分布列;
(2)已知每天接種一次花費100元,現(xiàn)有以下兩種試驗方案:
①若在一個接種周期內(nèi)連續(xù)2次出現(xiàn)抗體即終止本周期試驗,進行下一接種周期,試驗持續(xù)三個接種周期,設(shè)此種試驗方式的花費為元;
②若在一個接種周期內(nèi)出現(xiàn)2次或3次抗體,該周期結(jié)束后終止試驗,已知試驗至多持續(xù)三個接種周期,設(shè)此種試驗方式的花費為元.
比較隨機變量和的數(shù)學期望的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關(guān)于異面直線a,b,下列四個命題正確的有( )
A.過直線a有且僅有一個平面β,使b⊥β
B.過直線a有且僅有一個平面β,使b//β
C.在空間存在平面β,使a//β,b//β
D.在空間不存在平面β,使a⊥β,b⊥β
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知隨機變量X服從正態(tài)分布N(100,100),則下列選項正確的是( )
(參考數(shù)值:隨機變量ξ服從正態(tài)分布,則P(μ﹣σ<ξ<μ+σ)=0.6826),P(μ﹣2σ<ξ<μ+2σ)=0.9544,P(μ﹣3σ<ξ<μ+3σ)=0.9974)
A.E(X)=100B.D(X)=100
C.P(X≥90)=0.8413D.P(X≤120)=0.9987
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知梯形ABCD中,,如圖(1)所示.現(xiàn)將△ABC沿邊BC翻折至A'BC,記二面角A'—BC—D的大小為θ.
(1)當θ=90°時,如圖(2)所示,過點B作平面與A‘D垂直,分別交于點E,F,求點E到平面的距離;
(2)當時,如圖(3)所示,求二面角的正切值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題10分)選修4—4:坐標系與參數(shù)方程
已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ。
(Ⅰ)把C1的參數(shù)方程化為極坐標方程;
(Ⅱ)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《最強大腦》是江蘇衛(wèi)視引進德國節(jié)目《SuperBrain》而推出的大型科學競技真人秀節(jié)目.節(jié)目籌備組透露挑選選手的方式:不但要對空間感知、照相式記憶進行考核,而且要讓選手經(jīng)過名校最權(quán)威的腦力測試,120分以上才有機會入圍.某重點高校準備調(diào)查腦力測試成績是否與性別有關(guān),在該高校隨機抽取男、女學生各100名,然后對這200名學生進行腦力測試.規(guī)定:分數(shù)不小于120分為“入圍學生”,分數(shù)小于120分為“未入圍學生”.已知男生入圍24人,女生未入圍80人.
(1)根據(jù)題意,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有以上的把握認為腦力測試后是否為“入圍學生”與性別有關(guān);
性別 | 入圍人數(shù) | 未入圍人數(shù) | 總計 |
男生 | 24 | ||
女生 | 80 | ||
總計 |
(2)用分層抽樣的方法從“入圍學生”中隨機抽取11名學生,然后再從這11名學生中抽取3名參加某期《最強大腦》,設(shè)抽到的3名學生中女生的人數(shù)為,求的分布列及數(shù)學期望.
附:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計如下:
每月完成合格產(chǎn)品的件數(shù)(單位:百件) | |||||
頻數(shù) | 10 | 45 | 35 | 6 | 4 |
男員工人數(shù) | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評為“生產(chǎn)能手”.由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有95%的把握認為“生產(chǎn)能手”與性別有關(guān)?
非“生產(chǎn)能手” | “生產(chǎn)能手” | 合計 | |
男員工 | |||
女員工 | |||
合計 |
(2)為提高員工勞動的積極性,工廠實行累進計件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計件單價為1元;超出件的部分,累進計件單價為1.2元;超出件的部分,累進計件單價為1.3元;超出400件以上的部分,累進計件單價為1.4元.將這4段中各段的頻率視為相應的概率,在該廠男員工中選取1人,女員工中隨機選取2人進行工資調(diào)查,設(shè)實得計件工資(實得計件工資=定額計件工資+超定額計件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學期望.
附:,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com