【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點中,相鄰兩個交點之間的距離為 ,且圖象上一個最低點為
(1)求f(x)的解析式;
(2)當 ,求f(x)的值域.

【答案】
(1)解:由最低點為 得A=2.

由x軸上相鄰的兩個交點之間的距離為 = ,

即T=π,

由點 在圖象上的

,∴


(2)解:∵ ,∴

= ,即 時,f(x)取得最大值2;當

時,f(x)取得最小值﹣1,

故f(x)的值域為[﹣1,2]


【解析】(1)根據(jù)最低點M可求得A;由x軸上相鄰的兩個交點之間的距離可求得ω;進而把點M代入f(x)即可求得φ,把A,ω,φ代入f(x)即可得到函數(shù)的解析式.(2)根據(jù)x的范圍進而可確定當 的范圍,根據(jù)正弦函數(shù)的單調性可求得函數(shù)的最大值和最小值.確定函數(shù)的值域.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中,為常數(shù)且)在處取得極值.

(Ⅰ)當時,求的單調區(qū)間;

(Ⅱ)若上的最大值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,以為頂點的六面體中, 均為等邊三角形,且平面平面, 平面, , .

(1)求證: 平面;

(2)求此六面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用分層抽樣的方法從某校學生中抽取一個容量為60的樣本,其中高二年級抽取20人,高三年級抽取25人,已知該校高一年級共有800人,則該校學生總數(shù)為人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線 軸的交點是橢圓 的一個焦點.

(1)求橢圓的方程;

(2)若直線與橢圓交于、兩點,是否存在使得以線段為直徑的圓恰好經過坐標原點?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣2sin(2x+φ)(|φ|<π),若 ,則f(x)的一個單調遞增區(qū)間可以是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ< )的部分圖象如圖所示.

(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=f(x﹣ )﹣f(x+ )的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,圓C經過A(0,1),B(3,4),C(6,1)三點.
(1)求圓C的方程;
(2)若圓C與直線x﹣y+a=0交于A,B兩點,且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四邊形ABCD中, =(3,2), =(x,y), =(﹣2,﹣3)
(1)若 ,試求x與y滿足的關系式;
(2)滿足(1)同時又有 ,求x,y的值及四邊形ABCD的面積.

查看答案和解析>>

同步練習冊答案