【題目】為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進(jìn)行獎勵,規(guī)定:每位顧客從一個裝有4個標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個球,球上所標(biāo)的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標(biāo)的面值為50元,其余3個均為10元,求:
①顧客所獲的獎勵額為60元的概率;
②顧客所獲的獎勵額的分布列及數(shù)學(xué)期望;
(2)商場對獎勵總額的預(yù)算是60000元,并規(guī)定袋中的4個球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預(yù)算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設(shè)計(jì),并說明理由.
【答案】
(1)解:設(shè)顧客所獲取的獎勵額為X,
①依題意,得P(X=60)= ,
即顧客所獲得獎勵額為60元的概率為 ,
②依題意得X得所有可能取值為20,60,
P(X=60)= ,P(X=20)= ,
即X的分布列為
X | 60 | 20 |
P |
所以這位顧客所獲的獎勵額的數(shù)學(xué)期望為E(X)=20× +60× =40
(2)解:根據(jù)商場的預(yù)算,每個顧客的平均獎勵額為60元,所以先尋找期望為60元的可能方案.
對于面值由10元和50元組成的情況,如果選擇(10,10,10,50)的方案,因?yàn)?0元是面值之和的最大值,所以數(shù)學(xué)期望不可能為60元,
如果選擇(50,50,50,10)的方案,因?yàn)?0元是面值之和的最小值,所以數(shù)學(xué)期望也不可能為60元,
因此可能的方案是(10,10,50,50)記為方案1,
對于面值由20元和40元的組成的情況,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),記為方案2,
以下是對這兩個方案的分析:
對于方案1,即方案(10,10,50,50)設(shè)顧客所獲取的獎勵額為X1,則X1的分布列為
X1 | 60 | 20 | 100 |
P |
X1 的數(shù)學(xué)期望為E(X1)= .
X1 的方差D(X1)= = ,
對于方案2,即方案(20,20,40,40)設(shè)顧客所獲取的獎勵額為X2,則X2的分布列為
X2 | 40 | 60 | 80 |
P |
X2 的數(shù)學(xué)期望為E(X2)= =60,
X2 的方差D(X2)=差D(X1) = .
由于兩種方案的獎勵額的數(shù)學(xué)期望都符合要求,但方案2獎勵額的方差比方案1小,所以應(yīng)該選擇方案2.
【解析】(1)根據(jù)古典概型的概率計(jì)算公式計(jì)算顧客所獲的獎勵額為60元的概率,依題意得X得所有可能取值為20,60,分別求出P(X=60),P(X=20),畫出顧客所獲的獎勵額的分布列求出數(shù)學(xué)期望;(2)先討論,尋找期望為60元的方案,找到(10,10,50,50),(20,20,40,40)兩種方案,分別求出數(shù)學(xué)期望和方差,然后做比較,問題得以解決.
【考點(diǎn)精析】掌握離散型隨機(jī)變量及其分布列是解答本題的根本,需要知道在射擊、產(chǎn)品檢驗(yàn)等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】π為圓周率,e=2.71828…為自然對數(shù)的底數(shù).
(1)求函數(shù)f(x)= 的單調(diào)區(qū)間;
(2)求e3 , 3e , eπ , πe , 3π , π3這6個數(shù)中的最大數(shù)和最小數(shù);
(3)將e3 , 3e , eπ , πe , 3π , π3這6個數(shù)按從小到大的順序排列,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某學(xué)校準(zhǔn)備修建一個面積為2400平方米的矩形活動場地(圖中ABCD)的圍欄,按照修建要求,中間用圍墻EF隔開,使得ABEF為矩形,EFCD為正方形,設(shè)米,已知圍墻(包括EF)的修建費(fèi)用均為每米500元,設(shè)圍墻(包括EF)的修建總費(fèi)用為y元.
(1)求出y關(guān)于x的函數(shù)解析式及x的取值范圍;
(2)當(dāng)x為何值時,圍墻(包括EF)的修建總費(fèi)用y最小?并求出y的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=3x,f(a+2)=27,函數(shù)g(x)=λ·2ax-4x的定義域?yàn)?/span>[0,2].
(1)求a的值;
(2)若函數(shù)g(x)在[0,2]上單調(diào)遞減,求λ的取值范圍;
(3)若函數(shù)g(x)的最大值是,求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過,,,三點(diǎn),是線段上的動點(diǎn),,是過點(diǎn)且互相垂直的兩條直線,其中交軸于點(diǎn),交圓于、兩點(diǎn).
(1)若,求直線的方程;
(2)若是使恒成立的最小正整數(shù),求三角形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四面體的頂點(diǎn)和各棱中點(diǎn)共有10個點(diǎn),在其中任取4個不共面的點(diǎn),不同的取法有__用數(shù)字作答
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對我國申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:
支持 | 不支持 | 總計(jì) | |
男性市民 | |||
女性市民 | |||
總計(jì) |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)能否在犯錯誤的概率不超過的前提下認(rèn)為支持申辦年足球世界杯與性別有關(guān)?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,過A1、C、D三點(diǎn)的平面記為α,BB1與α的交點(diǎn)為Q.
(1)證明:Q為BB1的中點(diǎn);
(2)求此四棱柱被平面α所分成上下兩部分的體積之比;
(3)若AA1=4,CD=2,梯形ABCD的面積為6,求平面α與底面ABCD所成二面角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com