【題目】已知數(shù)列{an}中,a1=0,an+1=an+6n+3,數(shù)列{bn}滿足bn=n,則數(shù)列{bn}的最大項為第_____項
【答案】11
【解析】
首先利用疊加法求出數(shù)列的通項公式,進(jìn)一步利用數(shù)列的單調(diào)性的應(yīng)用求出數(shù)列的最大項.
數(shù)列{an}中,a1=0,an+1=an+6n+3,則an+1﹣an=6n+3,整理得an﹣an﹣1=6(n﹣1)+3,…a2﹣a1=6×1+3,
利用疊加法得到an﹣a1=6(1+2+…+n﹣1)+3(n﹣1),解得an=3(n﹣1)(n+1),故,
所以足bn=n.
即,整理得,
即,當(dāng)n≥1時,bn單調(diào)遞增,當(dāng)時,單調(diào)遞減,
n=10時,b10=110()9,n=11時,b11=132()10,
1,即b11>b10,
故當(dāng)n=11時,數(shù)列{bn}存在最大項為第11項.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
①當(dāng)時,函數(shù)有______零點;
②若函數(shù)的值域為,則實數(shù)的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市推行“共享汽車”服務(wù),租用汽車按行駛里程加用車時間收費(fèi),標(biāo)準(zhǔn)是“1元/公里+0.2元/分鐘”,剛在該市參加工作的小劉擬租用“共享汽車“上下班.單位同事老李告訴他:“上下班往返總路程雖然只有10公里,但偶爾上下班總共也需要用時大約1小時”,并將自己近50天往返開車的花費(fèi)時間情況統(tǒng)計如下
時間(分鐘) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
次數(shù)ξ | 8 | 18 | 14 | 8 | 2 |
將老李統(tǒng)計的各時間段頻率視為相應(yīng)概率,假定往返的路況不變,而且每次路上開車花費(fèi)時間視為用車時間.
(1)試估計小劉每天平均支付的租車費(fèi)用(每個時間段以中點時間計算);
(2)小劉認(rèn)為只要上下班開車總用時不超過45分鐘,租用“共享汽車”為他該日的“最優(yōu)選擇”,小劉擬租用該車上下班2天,設(shè)其中有ξ天為“最優(yōu)選擇”,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).
(Ⅰ)設(shè)是函數(shù)的導(dǎo)函數(shù),求函數(shù)在區(qū)間上的最小值;
(Ⅱ)若,函數(shù)在區(qū)間內(nèi)有零點,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos(),把函數(shù)f(x)的圖象向左平移個單位得函數(shù)g(x)的圖象,則下面結(jié)論正確的是( )
A.函數(shù)g(x)是偶函數(shù)
B.函數(shù)g(x)的最小正周期是4π
C.函數(shù)g(x)在區(qū)間[π,3π]上是增區(qū)數(shù)
D.函數(shù)g(x)的圖象關(guān)于直線x=π對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,直線的方程為2ρcosθ+5ρsinθ﹣8=0,曲線E的方程為ρ=4cosθ.
(1)以極點O為直角坐標(biāo)原點,極軸為x軸正半軸建立平面直角坐標(biāo)系,分別寫出直線l與曲線E的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線E交于A,B兩點,點C在曲線E上,求△ABC面積的最大值,并求此時點C的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,其中為實數(shù).
(1)若在上是單調(diào)減函數(shù),且在上有最小值,求的取值范圍;
(2)若在上是單調(diào)增函數(shù),試求的零點個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:“x∈[1,2], x2-lnx-a≥0”與命題q:“x∈R,x2+2ax-8-6a=0”都是真命題,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com