若某公司從五位大學(xué)畢業(yè)生甲、乙、丙、丁、戊中錄用三人,這五人被錄用的機(jī)會(huì)均等,則甲或乙被錄用的概率為
 
考點(diǎn):等可能事件的概率
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:設(shè)“甲或乙被錄用”為事件A,則其對(duì)立事件
.
A
表示“甲乙兩人都沒有被錄取”,先求出P(
.
A
),再利用P(A)=1-P(
.
A
)即可得出.
解答: 解:設(shè)“甲或乙被錄用”為事件A,則其對(duì)立事件
.
A
表示“甲乙兩人都沒有被錄取”,
則P(
.
A
)=
C
3
3
C
3
5
=
1
10
,
因此P(A)=1-P(
.
A
)=1-
1
10
=
9
10

故答案為:
9
10
點(diǎn)評(píng):本題考查等可能事件的概率,熟練掌握互為對(duì)立事件的概率之間的關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線x+y=
2
與兩坐標(biāo)軸圍成的三角形區(qū)域?yàn)镈,在D內(nèi)任取一點(diǎn)P(x,y),那么使得x2+y2≤1的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從[0,10]中任取一個(gè)數(shù)x,從[0,6]中任取一個(gè)數(shù)y,則使|x-5|+|y-3|≤4的概率為(  )
A、
1
2
B、
5
9
C、
2
3
D、
5
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)A,B兩種元件,已知生產(chǎn)A元件的正品率為75%,生產(chǎn)B元件的正品率為80%,生產(chǎn)1個(gè)元件A,若是正品則盈利50元,若是次品則虧損10元;生產(chǎn)1個(gè)元件B,若是正品則盈利40元,若是次品則虧損5元.
(Ⅰ)求生產(chǎn)5個(gè)元件A所得利潤(rùn)不少于140元的概率;
(Ⅱ)設(shè)X為生產(chǎn)1個(gè)元件A和1個(gè)元件B所得總利潤(rùn),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,過(guò)橢圓L的左頂點(diǎn)A(-3,0)和下頂點(diǎn)B且斜率均為k的兩直線l1,l2分別交橢圓于C,D,又l1交y軸于M,l2交x軸于N,且CD與MN相交于點(diǎn)P,當(dāng)k=3時(shí),△ABM是直角三角形.
(Ⅰ)求橢圓L的標(biāo)準(zhǔn)方程;
(Ⅱ)(i)證明:存在實(shí)數(shù)λ,使得
AM
OP
;
(ii)求|OP|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校對(duì)高一年級(jí)8個(gè)班參加合唱比賽的得分進(jìn)行了統(tǒng)計(jì),得到樣本的莖葉圖(如圖所示),則該樣本的中位數(shù)和平均數(shù)分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面關(guān)于f(x)的判斷:
①y=f(x-2)與y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱;
②若f(x)為偶函數(shù),且f(2+x)=-f(x),則f(x)的圖象關(guān)于直線x=2對(duì)稱.
③設(shè)函數(shù)f(x)=lnx,且x0,x1,x2∈(0,+∞),若x1<x2,則
1
x2
f(x1)-f(x2)
x1-x2

④函數(shù)f(x)=lnx,x0,x1,x2∈(0,+∞),存在x0∈(x1,x2),(x1<x2),使得
1
x0
=
f(x1)-f(x2)
x1-x2

⑤設(shè)函數(shù)f(x)=x2-3x+4,g(x)=
1
2
x2+4lnx+a
.對(duì)于?x1∈[1,e],總?x2∈[1,e],使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍為[1,
5
4
]

其中正確的判斷是
 
(把你認(rèn)為正確的判斷都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科做)直棱柱ABCD-A1B1C1D1中,AA1=AD=DC=2,BC=1,∠ADC=90°,下列結(jié)論:
①該直棱柱的體積一定是6
②用一平面去截直四棱柱,截面可能為三角形,四邊形,五邊形和六邊形;
③M∈平面ABCD,D1M⊥平面A1C1D,則DM=2
2

④M∈平面ABCD,D1M⊥平面A1C1D,設(shè)D1M∩平面A1C1D=O,則
OC1
+
OA1
=
DO
;
⑤M∈平面ABCD,D1M⊥平面A1C1D,設(shè)D1M∩平面A1C1D=O,則D1O:OM=1:2;
其中你認(rèn)為正確的所有結(jié)論的序號(hào)是
 
.(寫出所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知命題p:橢圓
x2
10-m
+
y2
m-2
=1
,長(zhǎng)軸在y軸上.
(Ⅰ)若橢圓焦距為4,求實(shí)數(shù)m的值;
(Ⅱ)命題q:關(guān)于x的不等式x2-2x+m>0的解集是R;若“p∧q”是假命題,“p∨q”是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案