某校對(duì)高一年級(jí)8個(gè)班參加合唱比賽的得分進(jìn)行了統(tǒng)計(jì),得到樣本的莖葉圖(如圖所示),則該樣本的中位數(shù)和平均數(shù)分別是
 
考點(diǎn):莖葉圖
專(zhuān)題:概率與統(tǒng)計(jì)
分析:根據(jù)樣本數(shù)據(jù),結(jié)合中位數(shù)和平均數(shù)的公式即可得到結(jié)論.
解答: 解:由莖葉圖可知對(duì)應(yīng)的數(shù)據(jù)為79.84,86,88,90,91,92,94,
則中位數(shù)為
88+90
2
=89
,
平均數(shù)為80+
1
8
(-1+4+6+8+10+11+12+14)
=80+
64
8
=80+8=88
,
故答案為:89.88.
點(diǎn)評(píng):本題主要考查莖葉圖的應(yīng)用,根據(jù)中位數(shù)和平均數(shù)的定義和公式是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)與橢圓
x2
9
+
y2
4
=1
交于A,B兩點(diǎn),設(shè)線(xiàn)段AB的中點(diǎn)為P,若直線(xiàn)的斜率為k1,直線(xiàn)OP的斜率為k2,則k1k2等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a1•sin(x+α1)+a2•sin(x+α2)+…+αn•sin(x+αn),其中αi(i=1,2,…,n,n∈N*,n≥2)為已知實(shí)常數(shù),x∈R,則下列命題中錯(cuò)誤的是( 。
A、若f(0)=f(
π
2
)=0,則f(x)=0對(duì)任意實(shí)數(shù)x恒成立
B、若f(0)=0,則函數(shù)f(x)為奇函數(shù)
C、若f(
π
2
)=0,則函數(shù)f(x)為偶函數(shù)
D、當(dāng)f2(0)+f2
π
2
)≠0時(shí),若f(x1)=f(x2)=0,則x1-x2=2kπ(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知盒中有n個(gè)黑球和m個(gè)白球,連續(xù)不放回地從中隨機(jī)取球,每次取一個(gè),直至盒中無(wú)球,規(guī)定:第i次取球若取到黑球得2i,取到白球不得分,記隨機(jī)變量ξ為總的得分?jǐn)?shù).
(Ⅰ)當(dāng)n=m=2時(shí),求P(ξ=10);
(Ⅱ)若m=1,求隨機(jī)變量ξ的期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若某公司從五位大學(xué)畢業(yè)生甲、乙、丙、丁、戊中錄用三人,這五人被錄用的機(jī)會(huì)均等,則甲或乙被錄用的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下命題:
①一個(gè)簡(jiǎn)諧運(yùn)動(dòng)的函數(shù)表達(dá)式為f(x)=sin(
1
2
x+
4
)
,則這個(gè)簡(jiǎn)諧運(yùn)動(dòng)的函數(shù)的最小正周期為4π;
②已知函數(shù)f(x)=loga(x-
87
2
)+89,(a>0且a≠1)
恒過(guò)定點(diǎn)(m,n),則m,n使等式m=sin21°+sin22°+sin23°+…+sin2n°成立;
③對(duì)于函數(shù)f(x)=x2+ax+b和g(x)=logax(0<a<1),有f(
x1+x2
2
)≤f(x1)+f(x2)
g(
x1+x2
2
)≥g(x1)+g(x2)
成立;
④定義:若任意x∈A,總有a-x∈A,(A≠∅),就稱(chēng)集合A為a的閉集.已知集合A⊆{1,2,3,4,5,6},且A為6的閉集,則這樣的集合A共有7個(gè);
其中所有正確敘述的命題序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)為F,過(guò)F作斜率為
b
a
的直線(xiàn)與橢圓交于A,B兩點(diǎn),若|FB|≥2|FA|,則橢圓的離心率e的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若F1、F2是雙曲線(xiàn)
x2
4
-
y2
5
=1的兩個(gè)焦點(diǎn),點(diǎn)P是該雙曲線(xiàn)上一點(diǎn),滿(mǎn)足|PF1|+|PF2|=9,則|PF1|•|PF2|=( 。
A、4
B、5
C、
65
4
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線(xiàn)l:y=2x-4交拋物線(xiàn)y2=4x于A、B兩點(diǎn),試在拋物線(xiàn)AOB這段曲線(xiàn)上求一點(diǎn)P,使△ABP的面積最大,并求這個(gè)最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案