【題目】已知拋物線,直線.

(1)若直線與拋物線相切,求直線的方程;

(2)設,直線與拋物線交于不同的兩點,,若存在點,滿足,且線段互相平分(為原點),求的取值范圍.

【答案】(1)(2)見解析

【解析】

1)聯(lián)立直線方程與拋物線方程,利用即可求解。

2)由直線與拋物線相交可得:,由(1)可得 ,由線段OC與AB互相平分可得四邊形OACB為平行四邊形,得到C,利用得到,即: =-1,再將 ,代入即可求得,對的范圍分類,利用基本不等式即可得解。

解:(1)法1:由

所以,所求的切線方程為

法2:因為直線恒過(0,-4),所以由

設切點為,由題可得,直線與拋物線在軸下方的圖像相切,

所以切線方程為,將坐標(0,-4)代入得

即切點為(8,-8),再將該點代入得,

所以,所求的切線方程為

(2)由

,

所以,

因為線段OC與AB互相平分,所以四邊形OACB為平行四邊形

,即C

得,

法1:所以 =-1

,又

所以 ,所以

法2:因為

,即

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓Cab0)的右焦點為F,橢圓C上的兩點A,B關于原點對稱,且滿足,|FB|≤|FA|≤2|FB|,則橢圓C的離心率的取值范圍是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知直線2xy﹣1=0與直線x﹣2y+1=0交于點P

求過點P且平行于直線3x+4y﹣15=0的直線的方程;(結果寫成直線方程的一般式)

求過點P并且在兩坐標軸上截距相等的直線方程(結果寫成直線方程的一般式)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱的所有棱長都是2平面ABC,DE分別是AC,的中點.

求證:平面;

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系中,過點的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為與曲線C相交于不同的兩點M,N.

(1)求曲線C的直角坐標方程和直線l的普通方程;

(2)若,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,用種不同的顏色給圖中的個格子涂色,每個格子涂一種顏色,要求最多使用種顏色且相鄰的兩個格子顏色不同,則不同的涂色方法共有(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】個人排成一排,在下列情況下,各有多少種不同排法?

1)甲不在兩端;

2)甲、乙、丙三個必須在一起;

3)甲、乙必須在一起,且甲、乙都不能與丙相鄰.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O的直徑AB=3,點C為⊙O上異于AB的一點,平面ABC,且,點M為線段VB的中點.

1)求證:平面VAC;

2)若AB與平面VAC所成角的余弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求的值;

(2)已知某班共有人,記這人生日至少有兩人相同的概率為,,將一年看作365天.

(i)求的表達式;

(ii)估計的近似值(精確到0.01).

參考數(shù)值:,,.

查看答案和解析>>

同步練習冊答案