設(shè)函數(shù),其中為常數(shù)。
(Ⅰ)當(dāng)時(shí),判斷函數(shù)在定義域上的單調(diào)性;
(Ⅱ)若函數(shù)有極值點(diǎn),求的取值范圍及的極值點(diǎn)。
(Ⅰ)函數(shù)在定義域上單調(diào)遞增;(Ⅱ)當(dāng)且僅當(dāng)時(shí)有極值點(diǎn); 當(dāng)時(shí),有惟一最小值點(diǎn);當(dāng)時(shí),有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn)

試題分析:(Ⅰ)函數(shù)在定義域上的單調(diào)性的方法,一是利用定義,二是利用導(dǎo)數(shù),此題既有代數(shù)函數(shù)又有對(duì)數(shù)函數(shù),顯然利用導(dǎo)數(shù)判斷,只需對(duì)求導(dǎo),判斷的符號(hào)即可;(Ⅱ)求的極值,只需對(duì)求導(dǎo)即可,利用導(dǎo)數(shù)求函數(shù)的極值一般分為四個(gè)步驟:①確定函數(shù)的定義域;②求出;③令,列表;④確定函數(shù)的極值.此題由(Ⅰ)得,當(dāng)時(shí),函數(shù)無(wú)極值點(diǎn),只需討論的情況,解的根,討論在范圍內(nèi)根的個(gè)數(shù),從而確定的取值范圍及的極值點(diǎn),值得注意的是,求出的根時(shí),忽略討論根是否在定義域內(nèi),而出錯(cuò).
試題解析:(Ⅰ)由題意知,的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022340897533.png" style="vertical-align:middle;" />,  ∴當(dāng)時(shí),,函數(shù)在定義域上單調(diào)遞增.
(Ⅱ)①由(Ⅰ)得,當(dāng)時(shí),函數(shù)無(wú)極值點(diǎn),②時(shí),有兩個(gè)相同的解,但當(dāng)時(shí),,當(dāng)時(shí),時(shí),函數(shù)上無(wú)極值點(diǎn),③當(dāng)時(shí),有兩個(gè)不同解,,時(shí),,而,此時(shí) ,在定義域上的變化情況如下表:










極小值

由此表可知:當(dāng)時(shí),有惟一極小值點(diǎn) 
ii)  當(dāng)時(shí),0<<1,此時(shí),,的變化情況如下表:














極大值

極小值

由此表可知:時(shí),有一個(gè)極大值,和一個(gè)極小值點(diǎn); 綜上所述:當(dāng)且僅當(dāng)時(shí)有極值點(diǎn); 當(dāng)時(shí),有惟一最小值點(diǎn);當(dāng)時(shí),有一個(gè)極大值點(diǎn)和一個(gè)極小值點(diǎn)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)令其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)是否存在實(shí)數(shù),使函數(shù)上有唯一的零點(diǎn),若有,請(qǐng)求出的范圍;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題13分)已知函數(shù)
(1)若實(shí)數(shù)求函數(shù)上的極值;
(2)記函數(shù),設(shè)函數(shù)的圖像軸交于點(diǎn),曲線點(diǎn)處的切線與兩坐標(biāo)軸所圍成圖形的面積為則當(dāng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)當(dāng)時(shí),討論函數(shù)在[上的單調(diào)性;
(Ⅱ)如果,是函數(shù)的兩個(gè)零點(diǎn),為函數(shù)的導(dǎo)數(shù),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),其中
(I)求函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)時(shí),若存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知 ().
(1)當(dāng)時(shí),判斷在定義域上的單調(diào)性;
(2)若上的最小值為,求的值;
(3)若上恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)(x∈R)滿足>f(x),則   (    )
A.f(2)<f(0)B.f(2)≤f(0)
C.f(2)=f(0)D.f(2)>f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,的導(dǎo)函數(shù),則得圖像是(   )

查看答案和解析>>

同步練習(xí)冊(cè)答案