【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若存在與函數(shù)的圖象都相切的直線,求實數(shù)的取值范圍.
【答案】(1)單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,(2)[﹣1,+∞)
【解析】
(1)先求導(dǎo)數(shù),再根據(jù)導(dǎo)函數(shù)零點討論導(dǎo)函數(shù)符號,即得單調(diào)區(qū)間;
(2)設(shè)函數(shù)上點與函數(shù)上點處切線相同,分別求得導(dǎo)數(shù)和切線的斜率,可得﹣++﹣2=0,利用導(dǎo)數(shù)研究方程有解條件,可得a的范圍.
(1)當(dāng)時,,
時,;時,;
因此函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,
(2)設(shè)函數(shù)上點與函數(shù)上點處切線相同,
則==,
所以==,
所以=﹣,代入=得:
﹣++﹣2=0(*)
設(shè)﹣++﹣2
則
不妨設(shè)=0(>0),
則當(dāng)0<<時,<0,當(dāng)>時,>0,
所以在區(qū)間(0,)上單調(diào)遞減,在區(qū)間(,+∞)上單調(diào)遞增,
代入=﹣2,
可得min==2+2﹣+ln﹣2,
設(shè)=2+2﹣+ln﹣2,,
則=2+2++>0對>0恒成立,
所以在區(qū)間(0,+∞)上單調(diào)遞增,又=0,
所以當(dāng)0<<1時≤0,即當(dāng)0<≤1時≤0,
又當(dāng)x=ea+2時F(x)=﹣+lnea+2﹣a+﹣2=(﹣a)2≥0,
因此當(dāng)0<≤1時,函數(shù)必有零點;
即當(dāng)0<≤1時,必存在使得(*)成立;
即存在,,使得函數(shù)上點與函數(shù)上點處切線相同.
又由y=﹣2x得y′=﹣﹣2<0,
所以y=﹣2x在(0,1)單調(diào)遞減,
因此=﹣2∈[﹣1,+∞),
所以實數(shù)a的取值范圍是[﹣1,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. “f(0)”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B. 若p:,,則:,
C. “若,則”的否命題是“若,則”
D. 若為假命題,則p,q均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個頂點分別為A(﹣3,0),B(2,1),C(﹣2,3),試求:
(1)邊AC所在直線的方程;
(2)BC邊上的中線AD所在直線的方程;
(3)BC邊上的高AE所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求證:;
(2)當(dāng)時,若不等式恒成立,求實數(shù)的取值范圍;
(3)若,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線方程為
l:y=3x+1,且當(dāng)x=時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】珠海市某學(xué)校的研究性學(xué)習(xí)小組,對晝夜溫差(最高溫度與最低溫度的差)大小與綠豆種子一天內(nèi)出芽數(shù)之間的關(guān)系進(jìn)行了研究,該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的顆綠豆種子當(dāng)天內(nèi)的出芽數(shù)(如圖2)
已知綠豆種子出芽數(shù)(顆) 和溫差具有線性相關(guān)關(guān)系.
(1)求綠豆種子出芽數(shù) (顆)關(guān)于溫差的回歸方程;
(2)假如4月1日至7日的日溫差的平均值為,估計4月7日浸泡的顆綠豆種子一天內(nèi)的出芽數(shù).
附:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,是棱上動點,下列說法正確的是( )
A. 對任意動點,在平面內(nèi)不存在與平面平行的直線
B. 對任意動點,在平面內(nèi)存在與平面垂直的直線
C. 當(dāng)點從運動到的過程中,與平面所成的角變大
D. 當(dāng)點從運動到的過程中,點到平面的距離逐漸變小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).
(1)A類工人中和B類工人中各抽查多少工人?
(2)從A類工人中的抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2.
表一
生產(chǎn)能力分組 | [100,110) | [110,120) | [120,130) | [130,140) | [140,150) |
人數(shù) | 4 | 8 | 5 | 3 |
表二
生產(chǎn)能力分組 | [110,120) | [120,130) | [130,140) | [140,150) |
人數(shù) | 6 | 36 | 18 |
①先確定再補(bǔ)全下列頻率分布直方圖(用陰影部分表示).
②就生產(chǎn)能力而言,類工人中個體間的差異程度與類工人中個體間的差異程度哪個更?(不用計算,可通過觀察直方圖直接回答結(jié)論)
③分別估計類工人生產(chǎn)能力的平均數(shù)和中位數(shù)(求平均數(shù)時同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com